首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
活性炭吸附苯、环己烷、正戊烷和正已烷的测量表明,在同一种活性炭中各烃的饱和吸附体积相同,四种烃的吸附量与其摩尔体积成反比。同一种被吸附物在不同活性炭中的吸附量与各活性炭的比孔容和孔径分布有关。活性炭的比孔容大,且孔径小于30的微孔比例大时,其吸附和解吸容量也大。这些体系的~1H NMR研究进一步证实了孔径小于30的微孔中发生毛细管凝聚,导致吸附和解吸的容量增大。被吸附分子的自旋晶格弛豫时间几乎不随被吸附物的种类而异。他们与活性炭表面上酸性基团总量有较好的曲线关系。  相似文献   

2.
活性炭纤维的微孔结构水吸附   总被引:3,自引:0,他引:3  
测定了两种活性炭纤维(ACF)的氮气、水吸附等温线和XPS,研究了ACF的微孔结构和表面性质,用αs图分析氮吸附等温线获得了ACF的比表面积、微孔容量和微孔径。XPS表明在ACF表面存在多种不同结合状态的氧。水在ACF上的吸附等温线呈V型,具有很大的脱附滞后环。水通过与ACF表面的氧形成氢键发生吸附。ACF表面的初始吸附点多,则在低、中压时的水吸附量就大。  相似文献   

3.
孔结构对活性炭吸附水溶液中铅离子的影响   总被引:2,自引:0,他引:2  
选取三种表面化学性质相近的活性炭(AC),通过等温吸附实验考察活性炭对水溶液中铅离子的吸附性能,利用扫描电子显微镜(SEM)观察活性炭的表面微观形貌,通过低温(77 K)液氮吸附测定活性炭的比表面积和孔容,并分别以密度泛函理论(DFT)和Barrett-Joyner-Halenda (BJH)法计算微孔和中孔的孔径分布.结果表明:选用的三种活性炭AC1、AC2、AC3在比表面积和总孔容上呈依次下降的趋势,但表面开放孔均匀分布的AC2,具有最高的饱和吸附量,孔结构类似颗粒堆积孔的AC3,具有与表面开放孔分布集中的AC1相近的饱和吸附量;通过对孔结构与吸附量的关联分析可知,在活性炭吸附铅离子的过程中, 0.4-0.6 nm的孔是有效吸附孔, 10.5-20.6 nm、20.6-55.6 nm、5.2-10.5 nm三个区间的孔则会对吸附产生阻碍作用.  相似文献   

4.
汉麻杆基活性炭表面织构与储氢性能的研究   总被引:2,自引:0,他引:2  
以天然汉麻杆为原料,采用KOH化学活化的方法改变活化时间制备出了高比表面积活性炭,并且对其表面进行硝酸氧化处理,研究活性炭表面化学状态对其吸附性能的影响。采用77 K低温氮气吸附和FTIR对样品进行了表征,并在77 K、100 kPa的条件下测定样品的氢气吸附等温线。结果表明,所有样品具有较高的比表面积(2 435.93~3 240.95 m2·g-1)和总孔容(1.3~1.98 cm3·g-1),且随活化时间的延长而增加,3.5 h达到最大值,之后由于骨架坍塌有所减小。所有样品的孔径分布较为一致呈多峰型分布,主要以小于2 nm的微孔为主,同时含有少量的中孔和大孔。活化3.5 h样品的吸氢量最大,达到3.28wt%。研究发现,吸氢量受比表面积和孔容等参数影响较大,77 K下不仅小于2 nm的微孔对活性炭吸氢行为贡献较大,中孔也有十分重要的影响。样品经硝酸氧化处理后,BET比表面积和总孔容均在一定程度上减小,而氢气吸附量也有所降低。  相似文献   

5.
为比较不同物理吸附材料的结构参数对其储氢性能的影响,制备和选取了具有超高比表面积的活性炭、石墨烯以及金属有机骨架(MOFs)作为低温吸附储氢的典型材料。首先,利用77 K下氮气在材料上的吸附数据确定了其BET比表面积以及孔径分布的主要结构参数。其次,利用3Flex全自动微孔吸附仪在77-87 K测试了0-0.1 MPa低压下氢在各材料上的吸附量,而后在0.1-8 MPa高压条件下利用PCTPro测试了氢在各材料上的过剩吸附量。最后,分析了各材料的储氢量与其结构参数间的关系。结果表明,在低压下,影响物理吸附材料储氢量的主要因素为孔径分布小于1 nm的微孔;而高压下,氢在多孔材料上的最大过剩吸附量与材料的BET比表面积呈正相关关系,斜率为0.0059 mmol/m2。  相似文献   

6.
~1H和~(13)C NMR研究证明被吸附在不同孔结构活性炭中的烃类以毛细管凝聚和吸附在固体表面两种状态存在。链状烷烃平铺地吸附在固体表面。被吸附烃与活性炭表面酸性基团的质子交换在弛豫过程中起着重要作用。  相似文献   

7.
采用ZnCl_2活化法制备了枣核活性炭,研究了枣核活性炭对罗丹明B的吸附性能。采用低温氮气吸附脱附、FT-IR等方法对活性炭进行表征,结果显示,活性炭是中孔结构,中孔容为0.92cm~3/g,平均孔径为3.1 7nm,BET比表面积达1223.25m~2/g。研究了溶液初始浓度、吸附时间和活性炭质量浓度等因素对平衡吸附量的影响,以及罗丹明B在枣核活性炭上的吸附平衡与动力学。通过Langmuir等6种吸附等温模型对吸附数据进行拟合,结果表明,Redlich-Peterson模型能较好地描述罗丹明B在活性炭上的吸附平衡;动力学研究表明,该吸附过程符合Elovich模型。  相似文献   

8.
测定了3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭 (SSAC) 和剑麻基活性碳纤维 (SACF) 的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征。结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的极微孔;在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上。两者相比,SACF的中孔量和平均孔径更大。3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

9.
测定了3种植物基活性炭材料:椰壳活性炭(CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维(SACF)的氮吸附等温线,并用不同的理论方法对其孔结构进行了分析和表征.结果表明:CAC4为微孔型,孔径分布集中且大部分是0.7nm以下的板微孔:在相同条件下制备的SSAC和SACF孔分布较为相似,都呈多分散性,结构中除微孔外,还含有丰富的中孔,中孔率均超过50%以上.两者相比,SACF的中孔量和平均孔径更大,3个样品的形态特征和孔结构虽然不同,但其吸附过程都可以用微孔多段填充机理来解析。  相似文献   

10.
负载Pt活性炭纤维对NO的吸附活性   总被引:7,自引:0,他引:7  
李国希  黄启忠  侯娟 《催化学报》2003,24(2):107-110
 采用电化学方法制备了负载Pt的活性炭纤维,为研究其微孔结构、Pt的分散性以及对NO的吸附活性,分别考察了其对氮气、水和NO的吸附.电沉积Pt活性炭纤维的氮吸附等温线仍呈Langmuir型,表面积和微孔孔径基本不变;对水的初始吸附点数远远大于活性炭纤维.这表明电沉积Pt没有改变活性炭纤维的微孔结构,Pt粒高度分散在活性炭纤维的外表面.而NO的吸附量显著增加,说明存在化学吸附.  相似文献   

11.
微波再生对活性炭循环吸附SO_2的影响   总被引:1,自引:0,他引:1  
研究了脱硫活性炭的微波再生及其对烟气中SO2的循环吸附特性。通过扫描电镜、N2吸附、元素分析、Boehm滴定等表征了微波再生对活性炭孔隙结构和表面化学性质的影响,分析了微波再生对活性炭循环吸附烟气中SO2的影响规律。结果表明,微波再生是脱硫活性炭再生的有效手段,在合适的再生功率下,经过多次循环吸附/再生后,活性炭仍然保持较高的吸附容量,吸附17次后再生活性炭仍然高于原始活性炭,但同时由于再生过程中存在C与H2SO4的反应,活性炭存在明显的烧失现象。初次再生后,活性炭的表面酸性官能团在高温下基本完全分解,碱性官能团含量上升,活性炭的SO2吸附容量明显提高;多次吸附/再生循环后,再生反应起到了活化的作用,使活性炭的孔结构变狭长,微孔比表面积和微孔容积呈上升趋势,同时酸性和碱性官能团基本保持稳定,活性炭的SO2吸附容量逐渐增加。  相似文献   

12.
活性炭对乙酸乙酯的吸附和再生   总被引:2,自引:0,他引:2  
张宝  刘志广  王新平 《应用化学》2009,26(3):337-341
研究了活性炭的孔结构和表面化学性质及水蒸气存在对活性炭吸附乙酸乙酯的影响. 结果表明,活性炭的微孔(<1.70 nm)结构特征是活性炭吸附乙酸乙酯的主要因素,其表面性质对乙酸乙酯的吸附没有明显影响. 40 ℃下,具有丰富微孔的椰壳活性炭AC和Y2在乙酸乙酯入口体积分数为0.30%时,对乙酸乙酯的饱和吸附量分别为0.31和0.28 g/g. 在相对湿度低于40%时,活性炭对乙酸乙酯的饱和吸附量仍可达干燥条件下相应值的90%. 在180 ℃加热时可将吸附在活性炭上的乙酸乙酯有效地回收. 活性炭的吸附性能不受再生气体中所含少量O2的影响. 活性炭经6次再生循环使用,未发现其对乙酸乙酯的吸附性能发生变化.  相似文献   

13.
以生物质废弃物枣核为原料,通过Zn Cl2活化法制备了活性炭,采用低温N2吸附、FT-IR等对活性炭性能进行了表征。将该活性炭用于吸附对硝基苯酚,考察了吸附温度、溶液初始浓度等因素对吸附的影响,并对吸附动力学、热力学及吸附机理进行了研究。研究表明,枣核活性炭主要为微孔兼有一定中孔结构,比表面积为1096m2/g,平均孔径为2.2nm。该活性炭吸附对硝基苯酚的过程是一个快速吸附的过程,20min内吸附达平衡,符合准二级动力学模型;采用Toth和Redlich-Peterson模型描述对硝基苯酚在活性炭上的吸附更合适;热力学研究表明,该吸附过程为自发、吸热且体系混乱度减小的过程。利用生物质废弃物枣核制备活性炭并用于对硝基苯酚的吸附,具有一定的经济价值,实现以废治废的目的。  相似文献   

14.
以棕榈纤维为原材料、磷酸为活化剂制备活性炭纤维,通过单因素实验和正交实验深入探讨反应条件对活性炭纤维吸附性能的影响,并确定最佳制备条件。系统研究三氯生在活性炭纤维上的吸附热力学、动力学以及溶液p H值对吸附的影响,并研究比较乙醇洗脱与加热煅烧法对吸附饱和后的活性炭纤维的再生效果。结果表明,磷酸溶液质量分数和碳化温度对活性炭纤维吸附性能影响较大,活化剂浸渍时间对其影响较小,活性炭纤维的最佳制备条件为:磷酸溶液浓度25%,碳化温度400℃,活化时间36h。所制备的活性炭纤维的BET比表面积为1358.478m~2/g、微孔面积为1240.131m~2/g、平均孔径为1.886nm。活性炭纤维对三氯生的吸附等温线符合Langumuir方程,吸附是放热反应。动力学研究表明,吸附反应符合准二级动力学方程,且在5h后基本达到平衡。随着p H值的升高,材料对三氯生的吸附量略有下降。乙醇洗脱和加热煅烧均可有效再生吸附饱和后的活性炭纤维。  相似文献   

15.
采用动态法测定了NKA树脂对水中碘的吸附能力;研究了浓度、pH和流速等因素的影响;并在解吸条件和效率等方面与离子交换树脂作了对比。结果显示,NKA树脂对碘的吸附能力低于阴离子交换树脂和活性炭,但高于XAD-4和H-107。然而,NKA树脂的解吸效率和解吸液浓度比阴离子交换树脂和活性炭高得多。  相似文献   

16.
研究活性炭在硫化氢存在条件下催化氧化脱除煤气中单质汞的吸附机理和探讨提高其吸附能力的方法,在模拟煤气气氛下对3种活性炭和一种活性焦进行汞的吸附性能实验,并进一步分析活性炭(焦)的孔隙结构。用BET方程处理N2等温吸附数据,计算比表面积;用HK法进行微孔分析;用BJH法计算中孔孔径分布。结果表明,硫化氢被催化氧化后,生成吸附在活性炭孔壁上的活性硫促进了对汞的吸附;随着活性炭微孔和中孔体积的增大,活性炭对汞的吸附能力得到提高。  相似文献   

17.
采用巨正则系统MonteCarlo方法研究了甲烷在单壁碳纳米管(Singlewallcarbonnanotube,SWNT)中于低温74.05K下的吸附等温线及吸附机理,发现在两个较小的孔径(1.225nm和1.632nm)下单壁碳纳米管中甲烷的吸附有着明显的微孔所独有的“填充效应”,而在2.04nm以上的孔的吸附中会出现毛细凝聚现象。通过模拟知道发生毛细凝聚的必要条件是孔内能至少容纳下两层粒子,此外还导出在恒定温度下毛细凝聚吸附量与SWNT孔径关系。本文还模拟了常温300K下甲烷在SWNT内的吸附,对比了2.04nm和4.077nm两种孔径的SWNT吸附甲烷的等温线,推荐在4.077nm孔中的适宜吸附存储压力为5.0~6.0MPa,吸附质量分数可达16%~19%.  相似文献   

18.
杉木活性炭吸附处理水溶液中的尼古丁   总被引:1,自引:0,他引:1  
用不同孔径及化学性质的活性炭对尼古丁水溶液进行吸附研究. 以杉木屑为原料, 分别用氯化锌化学活化法和水蒸气物理活化法制备活性炭, 并分别命名为AC-Z和AC-H. 同时选用椰壳基商品活性炭作为对比吸附剂, 命名为AC-C. 采用比表面积孔径测定分析仪及Boehm滴定法对活性炭进行表征, 分别测定其比表面积、孔径分布和表面官能团含量. 吸附实验主要考虑吸附时间、温度和尼古丁溶液的初始浓度三个因素, 实验数据分析结果表明微孔有利于物理吸附的进行, 而表面酸性官能团及金属原子作为吸附活性位的作用更加重要. 由改变温度对各样品的吸附量影响也能说明活性位在吸附中的作用. AC-Z拥有较多的活性位, 温度变化时尼古丁的吸附量先升高后减小, 这主要是由于适合的温度能加快尼古丁分子的离解并促使其与活性位相结合, 而过高的温度会造成尼古丁分子动能增加, 导致分子间碰撞的机率和强度增大, 使吸附在活性炭表面的尼古丁分子脱落. AC-H和AC-C由较多的微孔和不同程度的活性位组成, 优先发生物理吸附, 并且伴随发生吸附剂表面分子团簇现象, 其吸附趋势与AC-Z相反. 动力学研究表明活性炭对尼古丁的吸附反应非常迅速, 并且符合准二阶动力学程模型. 各热力学参数ΔG0, ΔH0和ΔS0的计算结果表明吸附剂对尼古丁的吸附为吸热和自发性过程.AC-Z和AC-H的ΔH0值远低于AC-C, 说明吸附剂表面的活性位对尼古丁分子有强烈的吸引作用, 所以吸附相同数量吸附质分子所需的吸附热更小, 这也说明了活性位在吸附过程中发生作用.  相似文献   

19.
在Na_2O-CaO-B_2O_3-Al_2O_3-R-H_2O水热体系中,首次合成了四种新型微孔硼铝酸盐。吸附性能的测定及孔径分布的计算表明,它们均表现有分子筛吸附性能,且其孔径分布集中在0.5~0.7nm之间。  相似文献   

20.
物理吸附在活性炭上的有机分子的性质,一直是人们感兴趣的问题。近年来,人们开始用NMR梯度场和核弛豫的方法,研究活性炭上吸附分子的扩散运动和分子交换运动.由于吸附分子在活性炭上处于不同的状态,其核弛豫表现出快、慢两个过程。通过拟合磁化矢量随时间变化的曲线,可以得到不同状态分子的百分含量。本文采用核弛豫的方法,研究活性炭的表面酸性基团及孔径对被吸附的二氧六环(DO)类固相和类液相形成的影响.并对不同吸附量下,DO在活性炭上的吸附行为进行讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号