首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
陈力  王玉忠 《高分子科学》2012,30(2):297-307
A novel encapsulated flame retardant containing phosphorus-nitrogen(MSMM-Al-P) was prepared by encapsulating with polyamide 66(PA66-MSMM-Al-P) for the flame retardation of polyamide 6(PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing flame retardants(MSMM-Al -P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter. The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.  相似文献   

2.
Lou  Shumei  Zhang  Hui  Liu  Fang  Yin  Wenying  Ren  Guodong  Chen  Zhiyuan  Su  Chunjian 《Journal of Thermal Analysis and Calorimetry》2022,147(13):7229-7242
Journal of Thermal Analysis and Calorimetry - Glass fiber-reinforced polyamide 66 composite with red phosphorus flame retardant (PA66-GF FR (RP)) has excellent strength and flame retardant...  相似文献   

3.
This paper describes an attempt in order to improve the durability of the flame retardant polyamide 66 (PA66) fabric prepared by the reaction of surface photografting with acrylamide (AM) under UV irradiation. In this study, N,N′-methylene bisacrylamide (MBAAm) combined with acrylamide has been used as a photosensitive monomer during flame retardant finishing of the PA66 fabric sample. “Durable efficiency” has been introduced to evaluate the durability of AM/MBAAm-g-PA66 fabric after 50 times washing with the 0.5 % commercial grade detergent solution. The result indicates that durable efficiency reaches its maximal value of 94.5 % when the MBAAm concentration is 5.0 mass%. The effect of MBAAm on the flame retardancy, thermal stability and tensile properties of the treated PA66 fabric has been investigated, respectively. And an interesting phenomenon shows that although MBAAm could improve the thermal stability of the treated fabric significantly at high temperature, it could have a negative effect on the flame retardancy and tensile properties of the fabric sample when its concentration is high. Its possible mechanism has been discussed here.  相似文献   

4.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

5.
This paper is focused on in situ preparation of melamine cyanurate (MCA) nanoparticles from reaction of melamine (MEL) and cyanuric acid (CA) and their flame retardant polyamide 6 (PA6) composite in the extrusion process through a novel reactive processing method. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were utilized to characterize the in situ formed MCA nanoparticles and their blends with PA6. Introduction of pentaerythritol (LTP) and water-bound plasticizer dioctyl phthalate (DPT) into the extrusion reaction system greatly inhibits the evaporation of water required for melamine and cyanuric acid reaction at high temperature (higher than 180 °C), laying a foundation for successful in situ preparation of MCA through reactive processing. XRD and FT-IR measurements indicate that under the effect of pentaerythritol, dioctyl phthalate and water, melamine really reacts with cyanuric acid to in situ form MCA in extrusion process. The reaction degree is close to 100%. A very important finding through SEM is that the in situ formed MCA particles, which were found to have aspect ratio of about 7.5, radial size in the range of 70-300 nm (mostly 70-90 nm) and crystallite size of less than 22 nm, are uniformly dispersed in the matrix PA6 at nanoscale. The in situ formed MCA nanoparticles greatly improve the flame retardancy and the mechanical properties of flame-retarded PA6 materials, and the introduced plasticizer dioctyl phthalate also ameliorates the related impact property. The obtained flame-retarded PA6 materials have good comprehensive performance with flame retardancy UL-94 V-0 rating at 1.6 and 3.2 mm thickness, tensile strength 48.0 MPa, elongation at break 106.3% and Izod notched impact strength 8.92 kJ/m2. Compared with flame-retarded PA6 material with in situ formed MCA, the one prepared through conventional blending of PA6 with commercial MCA product has improved tensile strength but deteriorated impact strength and flame retardancy.  相似文献   

6.
一种无卤阻燃ABS体系的阻燃性能研究   总被引:3,自引:0,他引:3  
ABS是本世纪40年代发展起来的通用型热塑性材料[1],它有良好的力学性能,耐化学腐蚀、易加工等优点[2-6].  相似文献   

7.
本文研究了以聚磷酸铵(APP)为主阻燃剂,次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)为辅阻燃剂的协效阻燃体系对聚丙烯(PP)阻燃性能的影响。 采用垂直燃烧测试、极限氧指数(LOI)测试、热重分析、锥形量热仪测试、扫描电子显微镜分析等技术手段对所制备的阻燃样品进行了阻燃性能分析。 结果表明:单独添加任一质量分数30%阻燃剂,均不能使PP获得良好的阻燃性能;当阻燃剂总质量分数保持在30%,m(APP):m(AHP):m(MCA)=4:1:1时获得理想阻燃效果,此时阻燃PP的LOI为33%,垂直燃烧测试达到V-0级,热释放速率峰值(PHRR)从765.7 kW/m2降为122.7 kW/m2。  相似文献   

8.
An improved method for preparing melamine cyanurate (MCA)based flame retardant polyamide 6 (FRPA6)materials has been proposed.This processing method,i.e.,improved in situ polymerization,was used to synthesize flame retardant PA6.In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time.Through TEM photographs,it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm,are nanoscaled,highly uniformly dispersed in the PA6 matrix.Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.  相似文献   

9.
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.  相似文献   

10.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A novel flame retardant containing silicon and caged bicyclic phosphate groups, tri(2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-1-oxo-4-hydroxymethyl) phenylsilane (TPPSi) was successfully synthesized. The chemical structure of TPPSi was characterized by FTIR, 1H NMR and 31P NMR. The application of TPPSi (25 wt%) as a flame retardant in polyamide 6 (PA6) not only gains satisfied flame retardancy and smoke suppression, but also retains the high toughness and inherent appearance of pure PA6. The influence of TPPSi on the decomposition pathway of PA6 was discussed based on TG-FTIR and FTIR analysis. The interaction between TPPSi and PA6 at high temperature alters the decomposition pathway of PA6 resulting in the formation of the residue containing phosphorus and silicon. The heat and smoke release behaviors at different external heat fluxes were measured by cone calorimeter, and the fire residue was analyzed by SEM-EDX. The condensed phase action resulting from the barrier effect of residue is proposed to be the major flame retardancy mechanism of TPPSi in PA6, with the fuel reduction action as the minor.  相似文献   

12.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a novel synergistic flame retardant system containing magnesium hydroxide (MH) and methyl-blocked novolac (MBN) synthesized by Williamson ether route, were used for the flame retardance of polyamide-6 (PA6). The investigations showed that the thermal oxidative stability of MBN was obviously enhanced in the presence of MH compared with virgin novolac due to the decrease of phenol hydroxide groups subjected to be oxidized. It proved that MBN plays double roles: on the one hand, it remarkably promotes char formation and effectively eliminates the melt drips of PA6, therefore endows the materials with good flame retardancy; on the other hand, it also serves as an efficient lubricant and compatibilizer between MH and PA6, leading to the great improvement of the processability, as well as finer dispersion of MH in matrix, thus the flame retardant PA6 with good comprehensive performance can be obtained.  相似文献   

14.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

15.
氢氧化镁(MH)是一种重要环保型阻燃剂,针对MH阻燃效率低,添加量大,与树脂相容性差的特点,研制了硼改性酚醛基成炭剂(BPF)用于增强MH的凝聚相阻燃作用,以提高MH的阻燃效率.用XRD、红外、核磁等手段表征了BPF的化学结构.TGA研究表明BPF成炭性优异,750℃时残炭高达61%.阻燃PA6体系中,BPF与MH有显著的协效作用,材料能通过UL94-1.6 mm V0级别.BPF的阻燃增效机理分析表明,BPF燃烧时生成的B2O3可在燃烧材料表面富集形成玻璃态的有效阻隔层,使材料自熄.此外,BPF能显著提高材料加工流动性,具有较好增塑、润滑作用.BPF不会恶化材料力学性能,阻燃材料综合性能优良.  相似文献   

16.
A thermally stable imidazolium organoclay was synthesized to improve the flame retardancy performance of polyamide 66 (PA 66). To enhance flame retardancy of the PA 66/organoclay nanocomposite, the thermally stable organoclay was coated with monomethylol melamine (MMM) before melt‐compounding with PA 66. Transmission electron microscopy and X‐ray diffraction results confirmed the partial exfoliation of the organoclay in the PA 66 matrix. The use of the thermally stable organoclay did not affect the thermal stability of PA 66. The cone calorimeter results showed that the PA 66/orgnaoclay nanocomposite exhibited a greatly reduced heat release rate and a longer ignition time. However, the PA 66/organoclay binary nanocomposite had no rating in the UL‐94 vertical burning test because it did not extinguish until the entire polymer component was burnt. The PA 66 nanocomposite with 15 wt% of MMM‐coated organoclay performed better in the ignition resistance test than the PA 66/organoclay nanocomposite containing 15 wt% of melamine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
α-Zr phosphate (hereafter referred to as ZrP) based composites were prepared by melt blending in order to improve the flame retardancy properties of polyamide 6 (PA6), polyethylene terephthalate (PET), polypropylene (PP) and ethylene vinyl acetate copolymer (EVA). Different morphologies are distinguishable by electron microscopy: PA6-ZrP seems to be a nanocomposite by Transmission Electron Microscopy (TEM) whereas PET-, PP- and EVA-ZrP blends appear micro-composites by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. ZrP acts as flame retardant in PA6 reducing the total heat evolved and consequently the heat release rate during the combustion measured by cone calorimetry. Moreover, ZrP reduces the flammability of PET and EVA acting in synergistic effect with phosphorous based flame retardants. Indeed, it is showed that it is possible to reduce the amount of phosphorous flame retardant adding ZrP to reach UL94 classification V0 for both polymers.  相似文献   

18.
Modified montmorillonite‐containing phytic acid (PA‐MMT) has been prepared by acid treatment and then introduced into unsaturated polyester resin (UPR) with an intumescent flame retardant (IFRs). The flame retardancy and thermal degradation of UPR/IFRs/PA‐MMT were evaluated by a limiting oxygen index (LOI) test, a vertical burning test (UL‐94), a thermogravimetric analysis (TGA), and a cone calorimeter test (CCT). Besides, the mechanical properties were studied by a universal testing machine. The LOI value of UPR/IFRs/PA‐MMT composites was increased to 29.2%. The CCT results indicated that the incorporation of PA‐MMT and IFRs significantly improved the combustion behavior of UPR. The results of the mechanical properties indicated that 1.5 wt% loading of PA‐MMT in UPR/IFRs showed the highest improvement in flexural strength and tensile strength. The flame‐retardant mechanism of PA‐MMT/IFRs was examined and discussed based on the results of combustion behavior and char analysis.  相似文献   

19.
A hyperbranched polyamine was prepared using an A2 + B3 approach. It acted as a hyperbranched charring and foaming agent (HCFA) in combination with ammonium polyphosphate (APP) to form a new intumescent flame retardant (IFR) system for polyamide 6 (PA6). Effect of HCFA on flame retardant and thermal degradation properties of IFR‐PA6 was investigated by limiting oxygen index (LOI), UL‐94 vertical burning, cone calorimeter, and thermogravimetric analysis (TGA) tests. The IFR system presented the most effective flame retardancy in PA6 when the weight ratio of APP to HCFA was 2:1. The LOI value of IFR‐PA6 could reach 36.5 with V‐0 rating when the IFR loading was 30 wt%. Even if the loading decreased to 25 wt%, IFR‐PA6 could still maintain V‐0 rating with an LOI value of 31. TGA curves indicated that APP would interact with both PA6 and HCFA in PA6/APP/HCFA composite under heating. The interaction between APP and HCFA improved the char formation ability of IFR system and then much more char was formed for PA6/APP/HCFA composite than for PA6/APP. Therefore, better flame retardancy was achieved. Moreover, the structure and morphology of char residue were studied by Fourier transform infrared (FTIR), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The results indicated that compact and foaming char layer containing P‐O‐C structure was formed for PA6/APP/HCFA system during combustion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
As flammable natural rubber (NR) becomes more ubiquitous in industrial fields, there is a growing need for safe and effective flame retardant treatments through efficient techniques. Remarkably, our developed highly efficient natural tannic acid (TA)-based intumescent flame-retardant system (AGT) has the unique function in the rubber flame retardant aspect. Meanwhile, the developed coating method through polyurethane elastomer (PU) both as adhesive medium and a carbonforming agent can not only minimize the influence of flame retardant on the desirable intrinsic properties of base polymer and also maximize the efficiency of flame retardant. The flame-retardant coating (AGT/PU) exhibits highly efficient flame retardant performances reflected by a 31.9% reduction in peak heat release rate and a 27.3% reduction in total heat release and a 26.2% reduction in total smoke production with 50 wt% loading in 1 mm thick coating due to synergistic flame retardant effects. More importantly, the excellent flame retardancy performance are obtained by the PU@AGT10, as reflected in flame retardancy index (FRI) value of 11.88 makes it as excellent flame retardancy performance. While many physically mixed flame retardants are usually seriously detrimental to mechanical properties of NR, the influence of AGT/PU coating on mechanical properties of NR decreases obviously because fire retardant just directly impacts on PU adhesive layer rather than NR matrix, and the reinforcement function of graphene is also much significant. Moreover, the coating method requires just less flame retardant to achieve high flame retardant effect for NR. These findings suggest that significant opportunities for flame retardant polymer materials in industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号