首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
王成乐  丁鹏  李娟 《高分子学报》2016,(11):1594-1598
将具有封闭空心结构的酚醛微球(HPMs)引入到聚丙烯/膨胀阻燃剂(PP/IFR)体系,燃烧时一方面依托PP/IFR形成膨胀多孔炭,另一方面通过HPMs形成空心炭微球,嵌入到前面多孔炭的骨架中,形成具有多层次孔的炭结构,从而调控膨胀炭层,进而调节材料的阻燃性能.通过极限氧指数(LOI)、垂直燃烧(UL-94)等研究了材料的阻燃性能;通过热失重分析(TGA)测试其热稳定性;采用红外热成像仪监测燃烧过程材料的表面温度,用扫描电镜(SEM)观察IFR、HPMs在基体中的分散行为及炭层结构.结果表明,少量HPMs在聚合物中分散得比较均匀.HPMs调控了膨胀炭层,使PP/IFR形成了表层炭致密,内层具有多层次孔的炭结构.这种优质的炭结构可以使样品表面温度迅速降低,从而有效提高PP/IFR体系的阻燃效率,使得PP在添加18 wt%IFR和1 wt%HPMs就可以通过UL-94 V0级别.  相似文献   

2.
采用有机蒙脱土(OMMT)和碳酸镍(NC)为阻燃协效剂,与膨胀型阻燃剂(IFR)三元体系协同阻燃线性低密度聚乙烯(LLDPE).采用热重分析(TGA)、氧指数(LOI)测试、UL-94燃烧测试和锥形量热测试(CONE)研究了LLDPE阻燃体系的热稳定性和燃烧性能;采用红外光谱分析(FT-IR)、数码相机和扫描电子显微镜(SEM)对燃烧残余物的结构和形貌进行了分析.结果表明:固定mnLLDPE/mIFR=7/3,当moMMT/m(LLDPE+IFR)=0.04时,阻燃体系的LOI为31.5%,通过UL-94 V-0级测试,LLDPE-IFR-OMMT的残炭率为15.09%,最大热释放速率(PHRR)相比于纯LLDPE降低了50%;向LLDPE-IFR-OMMT体系中添加NC,少量的NC就能显著增加体系的阻燃性能,当mNC/m(LLDPE+IFR)=0.02时,阻燃体系的LOI为32.7%,LLDPE-IFR-OMMT-NC的残炭率达到19.04%,PHRR相比于纯LLDPE降低了57%.OMMT和NC的加入能催化LLDPE-IFR成炭,形成致密的炭层,增加炭层的强度,从而提高复合材料的阻燃性能.  相似文献   

3.
磷酸酯双三聚氰胺盐阻燃环氧树脂的燃烧性能和阻燃机理   总被引:2,自引:0,他引:2  
以季戊四醇、三氯氧磷、三聚氰胺为原料合成了[1-氧-4-亚甲基-2,6,7-三氧-1-磷杂双环(2,2,2)辛烷]磷酸酯双三聚氰胺盐阻燃剂,将该阻燃剂加入到环氧树脂中制成阻燃环氧树脂。用TG、SEM、EDS和FT-IR进行表征,并采用极限氧指数法和垂直燃烧法测试材料的燃烧性能,结果表明,极限氧指数和垂直燃烧性能随阻燃剂含量的增加而提高,当阻燃剂含量达到30%时,氧指数达到36,垂直燃烧性能达到V-0级;阻燃剂对材料的成炭量影响不大,但改变了炭层的组成和物理性质,燃烧过程中形成的含有P、O、N的粘性高聚物将炭层连接在一起,起到了隔热、隔氧作用,发挥了凝聚相阻燃作用。此外,阻燃环氧树脂在燃烧过程中有NH3等不燃气体逸出,有效地稀释了气相中的氧气浓度,发挥了气相阻燃作用,对材料的阻燃有协同作用。  相似文献   

4.
以双酚A型环氧树脂为基体、甲基纳迪克酸酐为固化剂、聚磷酸铵为膨胀阻燃剂、水热法制备的二氧化钛纳米管(TNTs)为阻燃协效剂,共混后交联固化制得了膨胀阻燃型环氧树脂复合材料。采用极限氧指数测试、垂直燃烧实验、扫描电镜和拉曼光谱分析了添加TNTs对环氧树脂膨胀阻燃材料的阻燃成炭协效作用。结果表明:TNTs的引入提高了环氧树脂膨胀阻燃材料的极限氧指数以及垂直燃烧UL-94测试评级。当TNTs质量分数为2%时,膨胀阻燃体系的极限氧指数达到28.4%,UL-94达到V-1级。同时,TNTs延缓了环氧树脂膨胀阻燃材料在高温下的热降解,提升了体系高温热稳定性和成炭性能。TNTs可以作为成炭的网络骨架,并促进高温下生成更多连续致密的炭层结构,且高温煅烧后残留的炭层具有更低的ID/IG(拉曼光谱在1 360cm-1及1 600cm-1处的吸收峰强度比)值,石墨化程度更高,炭层结构更加致密规整。  相似文献   

5.
通过双螺杆挤出机熔融共混制备了阻燃PA66/二乙基次磷酸铝(ADP)复合材料,采用极限氧指数(LOI)、垂直燃烧(UL94)测试、锥形量热仪(Cone)等研究了PA66/ADP材料的燃烧性能,同时还通过拉伸、弯曲强度测试考察了PA66/ADP复合材料的力学性能.研究表明:ADP添加量为8%时,该体系达到了UL94V-0级,LOI值由25. 3%提高到30. 2%. PA66/ADP材料的热释放速率峰值由1 168 k W/m2下降到535 k W/m2,添加ADP能够显著地增强成炭率,增强隔热作用.  相似文献   

6.
聚对苯二甲酸丙二醇酯作为新型聚酯材料,具有非常优良的性能,但其易燃性很大的限制了它的应用范围。为了提高对苯二甲酸乙二醇酯的阻燃性能,本文以无卤膨胀型EPFR-300A为阻燃改性剂,马来酸酐接枝聚烯烃(POE-g-MAH)弹性体为增韧剂,对聚对苯二甲酸丙二醇酯树脂(PTT)进行阻燃改性。通过热重分析仪(TGA)、示差扫描量热仪(DSC)、扫描电子显微镜(SEM)、力学性能等技术手段研究了阻燃剂和增韧剂对PTT树脂力学、热学和阻燃性能的影响。结果表明,增韧剂POE和POE-g-MAH的添加提高了PTT树脂的综合力学性能。当质量分数相同时,POE-g-MAH对PTT树脂的增韧效果要优于POE,且当POE-g-MAH质量分数为7%时,综合力学性能最佳。当添加相同质量分数增韧剂,EPFR-300A质量分数达到20%时,阻燃PTT材料阻燃性能最佳,极限氧指数(LOI)达到28.0%,垂直燃烧阻燃等级达到UL94 V-0级。EPFR-300A阻燃剂与PTT树脂间相容性良好,可以有效地促进PTT树脂成炭并提高材料的阻燃性能。  相似文献   

7.
利用极限氧指数、UL-94垂直燃烧试验、锥形量热器、拉伸测试等手段研究了碱式硫酸镁晶须(MOS)填充阻燃乙烯-醋酸乙烯酯共聚物(EVA)的燃烧性能和力学性能,并与氢氧化镁(MH)填充阻燃EVA进行了比较。实验结果表明:MOS是一种性能优良的无卤阻燃剂。当填充量相等时,与EVA/MH相比,EVA/MOS具有更高的极限氧指数和UL-94垂直燃烧级别,更低的热释放速率、有效燃烧热和质量损失速率,以及更高的力学强度。  相似文献   

8.
将制备的4种植物基多孔碳,甘蔗渣炭(SBC)、竹叶炭(BLC)、稻壳炭(RHC)及竹茎炭(BSC),以及购置的椰壳炭(CSC)、果壳炭(NSC)、碳纳米管(CNTs)及可膨胀石墨(EG)分别与聚磷酸铵(APP)复合用于阻燃环氧树脂(EP),研究了碳材料比表面积、表面活性及微观形貌对APP阻燃EP燃烧和热解行为的影响.物理吸附仪、X射线光电子能谱仪(XPS)、扫描电镜研究指出,颗粒状竹茎多孔碳(BSC)的比表面积(2063m2/g)及表面活性基团C—O—、C≡O及COO—的比例显著大于其他碳材料;各种碳材料均以微米级尺度分布于阻燃EP基体.氧指数(LOI)、UL 94垂直燃烧及锥形量热仪研究表明,0.8 wt%BSC或CNTs与3.1 wt%APP协同阻燃EP的LOI分别由EP的24.6%提高到27.3%和27.6%,UL 94均为V-1级,峰值热释放速率分别比EP/APP降低了27%和28%.碳材料的协同阻燃效果主要取决于微观形貌;对于颗粒状多孔碳,其比表面积、O/C比及表面活性基团比例越大,协同阻燃效果越好.热失重分析、共聚焦拉曼光谱及XPS研究证实,碳材料提高了EP/APP复合材料的初始分解温度和残炭量;大的比表面及表面活性,以及管状形貌能够提高环氧树脂复合材料高温残炭量、促进残炭类石墨化转变、改善残炭耐高温氧化性能.  相似文献   

9.
将自制的耐高温勃姆石@苯基次膦酸铝杂化阻燃剂(BM@Al-PPi)与市售改性红磷(MRP)复配制得一种可用于半芳香尼龙PA6T/DT(HTN)的耐高温高效阻燃体系.保持阻燃剂15 wt%的总添加量不变时,MRP的添加量仅为5 wt%即可赋予HTN垂直燃烧V-0级别,极限氧指数为29.8%.锥形量热测试及其燃烧残余物研究表明,MRP阻燃HTN材料以气相阻燃作用为主,抑制热释放效果不佳且烟释放明显增加;而BM@Al-PPi的凝聚相交联成炭作用可同时抑制热释放与烟释放.结合裂解气相色谱质谱联用(Py-GC-MS)分析,给出了HTN/BM@Al-PPi/MRP体系的阻燃机理.BM@Al-PPi与MRP结合使得残炭质量显著提高,同时兼具气相作用,达到了较好的阻燃效果.  相似文献   

10.
纳米阻燃高分子材料:现状、问题及展望   总被引:2,自引:0,他引:2  
纳米阻燃体系是一种新型的聚合物阻燃体系,被誉为阻燃技术的革命.极少量(≤5wt%)纳米阻燃剂的加入即能显著降低高分子材料燃烧时的热释放速率(HRR)和烟密度(SEA),延缓其燃烧过程,还能不同程度地提高材料的力学性能.本文总结了近年来国内外纳米阻燃领域的进展,介绍了本课题组在纳米阻燃方面所做的工作,探讨了纳米阻燃研究中存在的问题,并对其未来的发展进行了展望.  相似文献   

11.
In this paper, a novel synergistic flame retardant system containing magnesium hydroxide (MH) and methyl-blocked novolac (MBN) synthesized by Williamson ether route, were used for the flame retardance of polyamide-6 (PA6). The investigations showed that the thermal oxidative stability of MBN was obviously enhanced in the presence of MH compared with virgin novolac due to the decrease of phenol hydroxide groups subjected to be oxidized. It proved that MBN plays double roles: on the one hand, it remarkably promotes char formation and effectively eliminates the melt drips of PA6, therefore endows the materials with good flame retardancy; on the other hand, it also serves as an efficient lubricant and compatibilizer between MH and PA6, leading to the great improvement of the processability, as well as finer dispersion of MH in matrix, thus the flame retardant PA6 with good comprehensive performance can be obtained.  相似文献   

12.
Halogen free nitrogen-phosphorous flame retardants (PMOP) were prepared through reaction of melamine and polyphosphoric acid in the presence of flame retardant modifier CM with silicotungistic acid as a catalyst in aqueous solution. FT-IR, XRD, DSC and TGA techniques were used to characterize the reaction product PMOP. The obtained flame retardants were then used to prepare flame retardant (FR) polyamide 6 (PA6) composite reinforced with glass fiber (GF) and the factors affecting the flame retardancy of the material were also investigated. The FR GF reinforced PA6 composite and the obtained charred layers were analyzed by utilizing TGA, SEM, FT-IR and XRD. The properties of the charred layer were connected with the flame retardancy of the corresponding material to reveal the flame retarding mechanism of FR GF reinforced PA6 composite. The experimental results show that PMOP flame retardant consists of melamine polyphosphate, melamine phosphate and possible melamine pyrophosphate. The presence of CM was found to improve the flame retardancy of FR GF reinforced PA6 composite. It was experimentally found that PMOP flame retardant, which is comparatively stable in the range of processing temperatures of PA6, is particularly suitable for flame retarding PA6 reinforced with GF. With increasing the flame retardant content, the flame retardancy of the FR reinforced material is not improved so obviously. However, the increase in the GF content greatly improves the flame retardancy of the composite, because GF greatly increases the char yield of material, decreases the maximal thermal decomposition rate, promotes the formation of charred layer with (PNO)x structure and greatly increases the strength of the charred layer. The prepared FR GF reinforced PA6 composites have good comprehensive properties with flame retardancy 1.6 mm UL 94 V-0 level, tensile strength 76.8 MPa, Young's modulus 11.7 GPa, Izod notched impact strength 4.5 kJ/m2, flexural strength 98.0 MPa and flexural modulus 7.2 GPa, showing a better application prospect.  相似文献   

13.
以三氯氧磷和双酚A为原料制备了具有超支化结构的聚磷酸酯阻燃剂(HPPEA),通过红外(FTIR),核磁(1H-NMR,31P-NMR)及热重分析表征了产物的结构和热稳定性.将HPPEA与三聚氰胺聚磷酸盐(MPP)进行复配,通过熔融共混法制备阻燃尼龙6,通过氧指数法和垂直燃烧法测试了其阻燃性能,采用热重分析(TGA)研究...  相似文献   

14.
A novel flame retardant containing silicon and caged bicyclic phosphate groups, tri(2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane-1-oxo-4-hydroxymethyl) phenylsilane (TPPSi) was successfully synthesized. The chemical structure of TPPSi was characterized by FTIR, 1H NMR and 31P NMR. The application of TPPSi (25 wt%) as a flame retardant in polyamide 6 (PA6) not only gains satisfied flame retardancy and smoke suppression, but also retains the high toughness and inherent appearance of pure PA6. The influence of TPPSi on the decomposition pathway of PA6 was discussed based on TG-FTIR and FTIR analysis. The interaction between TPPSi and PA6 at high temperature alters the decomposition pathway of PA6 resulting in the formation of the residue containing phosphorus and silicon. The heat and smoke release behaviors at different external heat fluxes were measured by cone calorimeter, and the fire residue was analyzed by SEM-EDX. The condensed phase action resulting from the barrier effect of residue is proposed to be the major flame retardancy mechanism of TPPSi in PA6, with the fuel reduction action as the minor.  相似文献   

15.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
An improved method for preparing melamine cyanurate (MCA) based flame retardant polyamide 6 (FRPA6) materials has been proposed. This processing method, i.e., improved in situ polymerization, was used to synthesize flame retardant PA6. In situ formed MCA nanoparticles were supposed to be linked to PA6 chains in the ε-caprolactam hydrolytic polymerization system to obtain startype polymers for the first time. Through TEM photographs, it can be found that the in situ formed MCA nanoparticles with diametric size of less than 50 nm, are nanoscaled, highly uniformly dispersed in the PA6 matrix. Synthesized flame retardant PA6 have good fire performance which can achieve UL-94 V-0 rating at 1.6 mm thickness with the presence of 7.34 wt.% MCA in the matrix.  相似文献   

17.
聚丙烯是综合性能良好的五大通用塑料之一,但是其易燃的特点限制了其在很多领域的应用。氢氧化镁(MH)作为一种环境友好型的无机阻燃剂,常被用于阻燃聚丙烯,但是未经改性的MH极性强,易团聚,与基体的相容性差,难以在聚合物基体中均匀分散,在导致阻燃效率低的同时,对复合材料的力学性能也有很大的负面影响,为提高MH在聚合物基体中的界面相容性,往往需要对MH进行表面改性。本文总结了近几年来以表面化学改性、表面接枝改性、微胶囊化改性三种方法改性的MH阻燃聚丙烯的研究进展,并对其下一步的研究方向进行了展望。  相似文献   

18.
《中国化学快报》2023,34(1):107202
A new biobased flame retardant (MHPA) with remarkable compatibility was synthesized via a facile and low-cost neutralization reaction of magnesium hydroxide (MH) and phytic acid (PA). By blending the prepared MHPA into ethylene vinyl acetate (EVA), the fire retardancy, smoke suppression and mechanical properties of the composites were significantly improved. When 50 wt% of MH was added into EVA matrix, the value of limiting oxygen index (LOI) reached 26.1%. Whereas, when 10 wt% MH in the EVA composites (with initial 50 wt% MH) was replaced by MHPA, the resulted EVA composites had a LOI value of 30.8%, indicating high efficiency of addition of MHPA to improve flame retardancy. Moreover, the heat release rate (HRR) and total smoke production (TSP) of the EVA composites reduced by 54.4% and 27.6%, respectively, suggesting that incorporation of MHPA could effectively hinder rapid degradation of EVA composites during burning process. The fire-retardant mechanism may reside in that the MHPA combined with MH can present the excellent carbonization and expansion effects. This study illustrates that the biobased MHPA has a broad application prospect to develop flame-retardant EVA composites.  相似文献   

19.
A novel intumescent flame retardant, containing ammonium polyphosphate (APP), and poly(hexamethylene terephthalamide) (PA6T), was prepared for flame retarding polypropylene (PP). The flame retardation of the PP composites was characterized by limiting oxygen index (LOI). The thermal degradation of the composites was investigated by means of thermogravimetric analysis (TG) and TG coupled with Fourier transform infrared spectroscopy (TG-FTIR). The morphology of the char obtained after combustion of the composites was studied by scanning electron microscopy. It has been found the intumescent flame retardant showed good flame retardancy, with the LOI value of the PA6T/APP/PP (5/25/70) system increasing from 17.5 to 32. Meanwhile, the TG and TG-FTIR work indicated that PA6T could be effective as a carbonization agent and there was a synergistic reaction between PA6T and APP, which effectively promoted the char formation of the PP composites. Moreover, it was revealed that uniform and compact intumescent char layer was formed after combustion of the intumescent flame retarded PP composites.  相似文献   

20.
The synergistic effect of phosphorus oxynitride(PON) with a novolac-based char former modified by salification (NA-metal salt) on the flame retardance of polyamide 6(PA6) was investigated.For this purpose,various flame-retardant PA6 systems were melt-compounded with PON,PON/NA,PON/NA-V2O5 and PON/NA-Fe2O3,and their flame retardance was evaluated by measuring the limiting oxygen index(LOI) values and UL-94 vertical burning ratings.The results showed that,compared with the PA6/PON/NA system,the combination of two char formers(NA-V2O5,NA-Fe2O3) with PON could obviously improve the char formation and flame retardance of PA6.The flame retardance and cone calorimetric analyses showed the stronger synergism as well as the better flame retardant performance of PON/NA-Fe2O3 flame retardant system. The effects of different char formers on the flame retardance and thermal stability of this system were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号