首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Spectral and normal mode formulations for the three-dimensional field scattered by an object moving in a stratified medium are derived using full-field wave theory. The derivations are based on Green's theorem for the time-domain scalar wave equation and account for Doppler effects induced by target motion as well as source and receiver motion. The formulations are valid when multiple scattering between the object and waveguide boundaries can be neglected, and the scattered field can be expressed as a linear function of the object's plane wave scattering function. The advantage of the spectral formulation is that it incorporates the entire wave number spectrum, including evanescent waves, and therefore can potentially be used at much closer ranges to the target than the modal formulation. The normal mode formulation is more computationally efficient but is limited to longer ranges. For a monochromatic source that excites N incident modes in the waveguide, there will be roughly N2 distinct harmonic components in the scattered field. The Doppler shifts in the scattered field are highly dependent upon the waveguide environment, target shape, and measurement geometry. The Doppler effects are illustrated through a number of canonical examples.  相似文献   

2.
The role of decoherence of an electromagnetic field in the process of quantum nondemolition measurement of the number of photons using a nonlinear Mach-Zehnder interferometer is investigated. This decoherence is caused by distributed losses in a Kerr medium. A long interaction time between the field and the medium is required to achieve a high accuracy in the photon number measurement. The losses in the Kerr medium accompanying the resonance four-wave interaction between the measured and the probe fields lead to a measurement error close to unity at γτ ?1 (γ is the rate of losses in the medium, and τ is the time of interaction between the field and the medium); consequently, nondemolition quantum measurement turns out to be impossible in the scheme considered. Under these conditions, an increase in the intensity of the probe field does not result in achievement of the required measurement accuracy.  相似文献   

3.
Practical holography measurements of composite sources are usually performed using a multireference cross-spectral approach, and the measured sound field must be decomposed into spatially coherent partial fields before holographic projection. The formulations by which the latter approach have been implemented have not taken explicit account of the effect of additive noise on the reference signals and so have strictly been limited to the case in which noise superimposed on the reference signals is negligible. Further, when the sound field is measured by scanning a subarray over a number of patches in sequence, the decomposed partial fields can suffer from corruption in the form of a spatially distributed error resulting from source level variation from scan-to-scan. In the present work, the effects of both noise included in the reference signals, and source level variation during a scan-based measurement, on partial field decomposition are described, and an integrated procedure for simultaneously suppressing the two effects is provided. Also, the relative performance of two partial field decomposition formulations is compared, and a strategy for obtaining the best results is described. The proposed procedure has been verified by using numerical simulations and has been applied to holographic measurements of a subsonic jet.  相似文献   

4.
Multireference, scan-based near-field acoustical holography is a useful measurement tool that can be applied when an insufficient number of microphones is available to make measurements on a complete hologram surface simultaneously. The scan-based procedure can be used to construct a complete hologram by joining together subholograms captured using a relatively small, roving scan array and a fixed reference array. For the procedure to be successful, the source levels must remain stationary for the time taken to record the complete hologram; that is unlikely to be the case in practice, however. Usually, the reference signal levels measured during each scan differ from each other with the result that spatial noise is added to the hologram. A procedure to suppress the effects of source level, and hence reference level, variations is proposed here. The procedure is based on a formulation that explicitly features the acoustical transfer functions between the sources and both the reference and scanning, field microphones. When it is assumed that source level changes do not affect the sources' directivity, a nonstationarity compensation procedure can be derived that is based on measured transfer functions between the reference and field microphones. It has been verified both experimentally and in numerical simulations that the proposed procedure can help suppress spatially distributed noise caused by the type of source level nonstationarity that is characteristic of realistic sources.  相似文献   

5.
Proton-electron double resonance imaging (PEDRI) has been utilized for indirect determination of oxygen concentrations in aqueous samples and living systems. Due to the complexity of the problem, there are seven oxygen related parameters that need to be measured to determine the distribution of oxygen. We present an improved approach in which image intensities from only two PEDRI acquisitions with different EPR irradiation powers are required to determine the distribution of a paramagnetic probe and oxygen in an analyzed sample. This is achieved using three reference samples with known concentrations of a paramagnetic probe and oxygen placed inside the resonator together with the measurement sample. An EPR-off image, which has low signal intensity at low magnetic field (0.02 T) is not required for the calculations, significantly reducing the total time of the experiments and the noise while enhancing the accuracy of these oxygen measurements. The Finland trityl radical was used as the paramagnetic probe and oxygen concentrations could be accurately measured and imaged over the physiological range from 0 to 240 μM.  相似文献   

6.
For samples with T1s longer than 10s, calibration of the RF probe and a measurement of T1 can be very time-consuming. A technique is proposed for use in imaging applications where one wishes to rapidly obtain information about the RF flip angle and sample T1 prior to imaging. The flip angle measurement time is less than 1s for a single scan. Prior knowledge of the RF flip angle is not required for the measurement of T1. The resulting time savings in measuring the values of flip angle and T1 are particularly significant in the case of samples with very long T1 and short T2*. An imaging extension of the technique provides RF flip angle mapping without the need for incrementing the pulse duration, i.e., RF mapping can be performed at fixed RF amplifier output.  相似文献   

7.
Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was −16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.  相似文献   

8.
An analysis is presented of the time evolution of an optical field during a quantum nondemolition measurement of photon number using the cross-Kerr interaction between the signal and probe fields. It is shown that the signal field state collapses into a Fock state only asymptotically (in the infinite time limit), remaining in a superposition of two Fock states (Fock-state qubit) throughout most of the measurement period. Estimates are obtained both for the time required to measure photon number to the desired accuracy and for the Fock-state qubit lifetime.  相似文献   

9.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

10.
An electron spin resonance (ESR) probe that includes a static field source and a microwave resonator for the measurement of paramagnetic defects in tooth enamel is presented. Such defects are known to be a good marker for quantifying the amount of ionizing radiation dose absorbed in the tooth. The probe can measure the tooth when it is positioned just above its outer surface, i.e., in ex situ geometry. It is operated in pulsed mode at a frequency of ~6.2 GHz that corresponds to the magnitude of the static magnetic field of its permanent magnet. A detailed design of the probe is provided, together with its specifications in terms of measurement volume and signal-to-noise-ratio for a typical sample. Experimental results that verify its sensitivity and capability to measure gamma-irradiated teeth are provided. The current minimal detected signal by the probe corresponds to a radiation dose of ~4 Gy.  相似文献   

11.
本文结合近场扫描结构和纳米线-微光纤耦合技术,提出了一种基于硫化镉纳米线/锥形微光纤探针结构的被动近场光学扫描成像系统.该系统采用被动式纳米探针,保留了纳米探针对样品表面反射光的强约束优势.其理论收集效率为4.65‰,相比于传统的金属镀膜近场探针收集效率提高了一个数量级,可有效地提高扫描探针对样品形貌信息的检测能力;而后通过硫化镉纳米线与微光纤之间高效的倏逝场耦合,将检测的光强信号传输到远场进行光电探测,最终实现对目标样品形貌的分析成像,其样品宽度测量误差在7.28%以内.该系统不需要外部激发光路,利用显微镜自身光源进行远场照明,被动扫描探针仅作为样品表面反射光的被动收集系统.本文基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像方案,可有效地降低探针的制备难度和目标光场的检测难度,简化扫描成像的结构,为近场光学扫描显微系统之后的发展提供新的思路.  相似文献   

12.
Tablets of five different compression formulations were investigated for their surface roughness using scanning electron microscopy and non-contact laser profilometry. It was found that the composition of a formulation not only influenced the tabletting properties of the powder mixtures, but also the surface properties of the final product. The addition of larger quantities of very brittle materials such as dibasic calcium phosphate dihydrate increased the surface roughness of tablets. An increase in tabletting pressure reduced the tablet surface roughness. Tablets were found to have smoother edges than faces, presumably due to the comparatively higher shear stress at the die walls and a polishing effect during tablet ejection. The assessment of surface roughness in three dimensions appeared more powerful than a simple line profile measurement.  相似文献   

13.
This paper shows how a scanning laser Doppler vibrometer (LDV), an instrument designed to measure vibrations of structures or objects, can be used in a non-traditional fashion to identify acoustical sources. This is achieved by measuring the changes in the optical path induced by local fluctuation of the air refraction index to which the LDV is sensitive. The acoustical signal used is sinusoidal and may be recovered by scanning at a uniform rate over a subject area (continuous scan) parallel to the source axis and demodulating this signal. Due to the fact that the measured scan area is in fact a line integral over a measurement volume between the laser head and a rigid object needed to reflect the laser beam, multiple view planes around the axis of the acoustic source are usually measured. These are then passed through a tomographic algorithm, thereby reconstructing the full sound field. In this article however, only one view plane is measured, but the acoustic source is placed on a rotating surface with fixed rotational frequency, thereby imposing a modulation on the measured spectrum. Demodulation will allow reconstruction of the three-dimensional sound field.  相似文献   

14.
A hybrid approach is presented in the current work, which reconstructs the transient sound field radiated from the two-dimensional sources with unknown locations and sizes, by combining the free-field time reversal method and the interpolated time-domain equivalent source method (TDESM). In the first step of the proposed method, the time reversal focusing algorithm is performed to estimate the source locations on the source plane. And then, the interpolated TDESM is applied to reconstruct the transient sound field on the reconstruction plane by assuming that the equivalent sources are located near the estimated source locations found in the previous step. The proposed technique, in principle, requires fewer microphones in the measurement since the equivalent sources are only placed in the vicinity of the ‘real’ sound sources. Reconstruction of the transient sound field radiated from the dual-planar-piston model is studied by numerical simulation for feasibility demonstration. A measurement of the sound fields radiated from two baffled loudspeakers is performed in the anechoic chamber, which shows that a better reconstruction result can be achieved by using the proposed hybrid scheme than the original interpolated TDESM with relatively the same number of sampling channels.  相似文献   

15.
Ting-Fa Xu  Peng Zhao 《Optik》2011,122(8):719-723
Motion blur is caused by camera shakes or object motions during exposure when the shutter speed is relatively slow. As for the object motion blur, the degradation of a CCD image is often characterized by space-variant motion blurs, since objects are often moving in different directions at different speeds. But most image restorations for space-variant motion blurs are addressed only for progressive scan CCD images. To address the space-variant image restorations for interlaced scan images, we propose a novel image restoration scheme. First, one interlaced scan image frame is required, which is divided into the odd field and the even field images. These two field images are further segmented into rectangular blocks. The motion vectors are computed in these rectangular blocks using an efficient block matching algorithm. Second, image restoration is performed in these rectangular blocks using a constrained least square algorithm in the odd or even field image, which can both preserve edge structures and remove noises. Our novel scheme is illustrated by restoring a space-variant blurred moving boat image and a synthetic blurred image.  相似文献   

16.
The spatial resolution of the focused field of a classical time-reversal mirror has a wavelength-order lambda diffraction limit. Previously reported results for subwavelength focus require either the full knowledge of the original source or the evanescent waves in the near field. Here it is shown that subwavelength focusing can be achieved without a priori knowledge of the original probe source. If the field is recorded at a few wavelengths away from the probe source, where the amplitude of the near field is too low for subwavelength focusing, it is shown that the low amplitude near field can be amplified and the spatial resolution improved, using the near-field time reversal (NTR) procedure introduced here. The NTR is performed from the phase of the spatial spectrum of the field recorded on an array around the original probe source using an analytical continuation for the amplitude of the spatial spectrum. Following theory, lambda/20 resolution is experimentally demonstrated with audible acoustic wavefields in the air.  相似文献   

17.
太赫兹时域光谱技术(THz-TDS)广泛应用于材料、生物医学、化学、药学、安检等诸多领域。传统扫描式THz-TDS技术需要通过改变探测光延时逐点扫描并重构时域信号,仅适合于具有较高重复频率且稳定的太赫兹辐射源情形下的样品探测。在低重复频率或涨落较大的太赫兹辐射源情形下和不可逆过程中样品的探测,扫描式THz-TDS不再适用,需要使用单发THz-TDS技术,单发THz-TDS技术原则上仅需要一个激光脉冲就可以获取一个完整的太赫兹时域脉冲波形。介绍几种主要的单发THz-TDS探测技术,这些技术都利用了电光晶体的泡克尔斯效应,通过测量探测光的某个物理量的变化来提取太赫兹信号。根据探测方法不同可分为光谱编码、空间编码和互相关等技术。在光谱编码技术中,探测光不同频率成分在时间上发生分离,不同时间成分分别被太赫兹脉冲不同时刻电场调制,通过测量探测光各个频率被太赫兹脉冲调制前后的光谱的变化提取太赫兹脉冲波形。该方法光路简单,测量结果直观,有较高的信噪比,但其时间分辨率较低,且被测太赫兹信号容易产生失真。为提高被测信号的时间分辨率,有人提出了空间编码技术,即不同位置探测光分别被太赫兹脉冲不同时刻电场调制,通过测量探测光各个位置太赫兹脉冲调制前后的光强变化提取太赫兹脉冲波形。根据不同空间展开方法可分为一维空间编码技术和二维空间编码技术。空间编码技术中虽然有较高的时间分辨率,但由于探测光在空间展开能量分散使得其信噪比相对较低。此外,还有一种较高时间分辨率的技术即互相关技术,可分为共线互相关和非共线互相关技术。在非共线互相关技术中,被太赫兹脉冲调制的激光啁啾脉冲与短脉冲互相关作用产生二次谐波,通过太赫兹脉冲调制前后二次谐波空间分布变化来提取太赫兹信号;在共线互相关技术中被太赫兹脉冲调制的啁啾脉冲与短脉冲共线入射到光谱仪,通过干涉条纹提取太赫兹信号,该技术提高了时间分辨率和信噪比,但光路布置复杂,不能进行实时监测。回顾了这几种单发THz-TDS探测技术的发展历程,综述探测技术的原理、实验方案和测量结果,并讨论了这些探测技术的优势和不足。  相似文献   

18.
19.
刘微粒  邹晓兵  付洋洋  王鹏  王新新 《物理学报》2014,63(9):95207-095207
克尔效应(Kerr Effect)作为一种电光效应,主要表现为:克尔介质在外加电场作用下,会使得入射到其中的探测光带有外加电场的信息.基于上述原理,设计并搭建了由快脉冲高电压源、YAG激光器、同步控制子系统、被测绝缘子及克尔效应单元、相位差检测子系统构成的真空绝缘子表面电场在线测量实验平台.通过对比性测量,观察到了真空绝缘子沿面带电导致的表面电场畸变现象.并进一步对绝缘子表面电场的畸变进行了时间分辨测量.  相似文献   

20.
Gélat PN  Zeqiri B  Hodnett M 《Ultrasonics》2005,43(5):321-330
This paper describes a theoretical study of the way in which a circular aperture placed in front of a plane-piston modifies the ultrasonic field it generates. Specifically, the radiated acoustic power transmitted by the aperture and the radiation force experienced by an absorbing target placed in the transmitted beam, are evaluated at a distance from the exit-side of the aperture. The calculations used a finite element (FE) method, in conjunction with a surface Helmholtz integral formulation to solve the fluid/structure interaction problem. The PAFEC (Program for Automatic Finite Element Computation) vibroacoustics software was used for the FE calculations and the implementation of the surface Helmholtz integral formulation method. Acoustic pressures and particle velocities were computed at required points, whilst accounting for the presence of the aperture in the medium, together with its dynamic properties when subjected to an incident sound field. This enabled the calculation of the radiation force on the absorber and its variation with the applied aperture diameter was investigated. As part of the validation process for the new FE aperture model, the ratio of radiation force to radiated acoustic power obtained using the FE method in the unapertured case, through the use of the Rayleigh integral, yielded good agreement with results obtained through an analytical solution. The study has been carried out to provide a better understanding of the factors affecting the measurement uncertainty for the aperture method of determining the effective radiating area (A(ER)) of physiotherapy ultrasound treatment heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号