首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new concept of Variable Field Proton–Electron Double-Resonance Imaging (VF PEDRI) is proposed. This allows for functional mapping using specifically designed paramagnetic probes (e.g. oxygen or pH mapping) with MRI high quality spatial resolution and short acquisition time. Studies performed at 200 G field MRI with phantoms show that a pH map of the sample can be extracted using only two PEDRI images acquired in 140 s at pre-selected EPR excitation fields providing pH resolution of 0.1 pH units and a spatial resolution of 1.25 mm. Note that while concept of functional VF PEDRI was demonstrated using the pH probe, it can be applied for studies of other biologically relevant parameters of the medium such as redox state, concentrations of oxygen or glutathione using specifically designed EPR probes.  相似文献   

2.
Proton-electron double-resonance imaging (PEDRI) offers rapid image data collection and high resolution for spatial distribution of paramagnetic probes. Recently we developed the concept of variable field (VF) PEDRI which enables extracting a functional map from a limited number of images acquired at pre-selected EPR excitation fields using specific paramagnetic probes (Khramtsov et al., J. Magn. Reson. 202 (2010) 267-273). In this work, we propose and evaluate a new modality of PEDRI-based functional imaging with enhanced temporal resolution which we term variable radio frequency (VRF) PEDRI. The approach allows for functional mapping (e.g., pH mapping) using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. This approach uses a stationary magnetic field but different EPR RFs. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of a pH-sensitive nitroxide is converted to a pH map using a corresponding calibration curve. Elimination of field cycling decreased the acquisition time by exclusion periods of ramping and stabilization of the magnetic field. Improved magnetic field homogeneity and stability allowed for the fast MRI acquisition modalities such as fast spin echo. In total, about 30-fold decrease in EPR irradiation time was achieved for VRF PEDRI (2.4s) compared with VF PEDRI (70s). This is particularly important for in vivo applications enabling one to overcome the limiting stability of paramagnetic probes and sample overheating by reducing RF power deposition.  相似文献   

3.
Variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high-quality spatial resolution and short acquisition times. In this work we explored the potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition.  相似文献   

4.
Nuclear magnetic resonance relaxation measurements of bulk fluids provide a sensitive probe of the dynamics of molecular motion. Dissolved oxygen can interfere with this technique as its paramagnetic nature leads to a reduction of the paramagnetic relaxation times of the fluids. We studied this effect for the relaxation properties of crude oils that are in general characterized by a distribution of relaxation times. The samples were stock tank oils that have been exposed to air. We comparedT 1 andT 2 relaxation time distributions and their correlation functions of the initial (oxygenated) samples with those from the deoxygenated samples. Oxygen was removed from the oils with a freeze-thaw technique. As expected, the effect of oxygen is most apparent in oils with long relaxation times. In these oils the effect of oxygen can be described by an additional relaxation rate 1/T 1,2 ox to the transverse and longitudinal relaxation rates that is sample dependent but does not vary within the relaxation time distribution of the oil. Values of 1/T 1,2 ox for different crude oils were found to be in the range of 2.5 to 8.3 s. For crude oils that have components with relaxation times less than 100 ms, no significant oxygen effect is observed.  相似文献   

5.
We present a novel method for quantifying low concentrations of DNA based on single molecule detection (SMD) for molecular counting and flow measurements inside a microchannel. A custom confocal fluorescence spectroscopic system is implemented to detect fluorescent bursts emitted from stained DNA molecules. Measurements are made one molecule at a time as they flow through a femtoliter-sized laser focal probe. Durations of single molecule fluorescent bursts, which are found to be strongly related to the molecular transit times through the detection region, are statistically analyzed to determine the in situ flow speed and subsequently the sample volume flowing through the focal probe. Therefore, the absolute concentration of a DNA sample can be quantified based on the single molecule fluorescent counts from the DNA molecules and the associated probe volume for a measured time course. To validate this method for quantifying low concentrations of biomolecules, we tested samples of pBR322 DNA ranging from 1 pM to 10 fM (∼3 ng/ml to 30 pg/ml). Besides molecular quantification, we also demonstrate this method to be a precise and non-invasive way for flow profiling within a microchannel.  相似文献   

6.
Co-doped ZnO (Zn0.95Co0.05O) rods are fabricated by co-precipitation method at different temperatures and atmospheres. X-ray diffraction, Energy dispersive X-ray spectroscopy and Raman results indicate that the samples were crystalline with wurtzite structure and no metallic Co or other secondary phases were found. Raman results indicate that the Co-doped ZnO powders annealed at different temperatures have different oxygen vacancy concentrations. The oxygen vacancies play an important role in the magnetic origin for diluted magnetic semiconductors. At low oxygen vacancy concentration, room temperature ferromagnetism is presented in Co-doped ZnO rods, and the ferromagnetism increases with the increment of oxygen vacancy concentration. But at very high oxygen vacancy concentration, large paramagnetic or antiferromagnetic effects are observed in Co-doped ZnO rods due to the ferromagnetic-antiferromagnetic competition. In addition, the sample annealed in Ar gas has better magnetic properties than that annealed in air, which indicates that O2 plays an important role. Therefore, the ferromagnetism is affected by the amounts of structural defects, which depend sensitively on atmosphere and annealing temperature.  相似文献   

7.
Nanocrystalline samples with an average particle size of 40 and 52 nm have been synthesized by citrate-complex auto-ignition method. Magnetic properties of the samples show para- to ferromagnetic transition at around 135 K. The electron magnetic resonance (EMR) study on these samples indicates the presence of coexistence of two magnetic phases below 290 K. Electrical resistivity follows variable range hopping (VRH) mechanism in the paramagnetic regime. The magnetoresistance (MR) data has been analysed by spin dependent hopping between the localized spin clusters together with the phase-separation phenomenon. These clusters are assumed to be formed by distribution of canted spins and defects all over the nanoparticle. In addition, the hopping barrier depends on the magnetic moment orientation of the clusters. The magnetic moments of the clusters are narrowly oriented in ferro- and are randomly oriented in paramagnetic phase. The ferromagnetic phase contributes to the total MR at low applied magnetic fields whereas the paramagnetic phase contributes at relatively high fields in both the samples. The average cluster size in ferromagnetic phase is bigger than that in paramagnetic phase. It is also observed that the cluster size, in ferromagnetic phase, in 52 nm sample is bigger than that in the 40 nm sample. However, the average cluster size in paramagnetic phase is almost same in both the samples.  相似文献   

8.
Proton-electron double-resonance imaging (PEDRI) was recently employed to monitor the process of formation of a calcium alginate hydrogel at a field of 16mT. Here, under the same experimental conditions, images obtained through this technique are compared to images obtained by conventional T(2)-weighted method. The results confirm that the image contrast obtained using PEDRI, thanks to the Overhauser effect, exhibits an improved sensitivity with respect to changes in water mobility as previously suggested in the literature. Furthermore, by increasing the echo time interval for the T(2)-weighted images, important features of the gelling dynamics obtained via PEDRI could not be reproduced.  相似文献   

9.
EPR irradiation by a train of inverting pulses has potential advantages over continuous-wave EPR irradiation in DNP applications; however, it has previously been used only at high field (5 T). This paper presents the design and testing of an apparatus for performing pulsed DNP experiments at 10 mT with large samples (17 ml). Experimental results using pulsed DNP with an aqueous solution of a narrow-linewidth paramagnetic probe are presented. A maximum DNP enhancement of about -36 with a train of inverting pulses (width 500 ns, repetition time 4 micros) was measured. A preliminary comparison showed that, when the same enhancement value is considered, the pulsed DNP technique requires an average power that is about three times higher than that required with the CW irradiation. However, for in vivo DNP applications it is very important to minimize the average power deposited in the sample. From the experimental results reported in this work, when considering the maximum enhancement, the pulsed technique requires only 2% of the average power necessary with the CW DNP technique. We believe that this reduction in the average power can be important for future DNP studies with large biological samples.  相似文献   

10.
In this contribution, we explore the potential of proton electron double resonance imaging (PEDRI) in environmental science (hydrogeological) applications. After a discussion of the hydrogeological motivation for studies of free radical transport in environmental matrices, we present results from first experiments that show the principal applicability of the PEDRI technique to sediment samples. Field-cycled (FC) relaxation time contrast is identified as a possible source of artifacts in samples in which strong concentration gradients of the free radical phase are present. Furthermore, an outlook is given on how PEDRI can help in observations of the local interplay among contaminants, water and nonaqueous liquid phases.  相似文献   

11.
Remote detection of NMR is a novel technique in which an NMR-active sensor surveys an environment of interest and retains memory of that environment to be recovered at a later time in a different location. The NMR or MRI information about the sensor nucleus is encoded and stored as spin polarization at the first location and subsequently moved to a different physical location for optimized detection. A dedicated probe incorporating two separate radio frequency (RF)-circuits was built for this purpose. The encoding solenoid coil was large enough to fit around the bulky sample matrix, while the smaller detection solenoid coil had not only a higher quality factor, but also an enhanced filling factor since the coil volume comprised purely the sensor nuclei. We obtained two-dimensional (2D) void space images of two model porous samples with resolution less than 1.4 mm2. The remotely reconstructed images demonstrate the ability to determine fine structure with image quality superior to their directly detected counterparts and show the great potential of NMR remote detection for imaging applications that suffer from low sensitivity due to low concentrations and filling factor.  相似文献   

12.
Overmodulation of electron paramagnetic resonance (EPR) lines is routinely used in EPR oximetry in order to increase the signal-to-noise ratio and thus to improve the accuracy with which the line width of a spin probe can be measured. For a known probe type, the line width is easily translated into the oxygen partial pressure. A standard EPR spectrometer uses the analog phase-sensitive detection (PSD) to demodulate the EPR signal. PSD imposes the restriction that only one spectrum is measured at a time, which is normally the first-harmonic EPR line. Information about EPR signals centered at the other harmonics of the modulation frequency is irreversibly destroyed by PSD. The question is raised whether this information can be utilized for EPR oximetry, for overmodulation enhances the second- and the other harmonic spectra, so that they approach the first-harmonic spectrum in intensity. To find an answer, numerical simulation and experimental measurements have been conducted. The experiment required modification of the detection scheme, so that all EPR-related information in the overmodulated signal is preserved. This permits measuring of the multiharmonic EPR spectrum, which when fitted to a set of the corresponding theoretical lines produces more accurate results in comparison with the standard overmodulation method.  相似文献   

13.
New improved pH-sensitive nitroxides were applied for in vivo studies. An increased stability of the probes towards reduction was achieved by the introduction of the bulky ethyl groups in the vicinity of the paramagnetic NO fragment. In addition, the range of pH sensitivity of the approach was extended by the synthesis of probes with two ionizable groups, and, therefore, with two pKa values. Stability towards reduction and spectral characteristics of the three new probes were determined in vitro using 290 MHz radiofrequency (RF)- and X-band electron paramagnetic resonance (EPR), longitudinally detected EPR (LODEPR), and field-cycled dynamic nuclear polarization (FC-DNP) techniques. The newly synthesized probe, 4-[bis(2-hydroxyethyl)amino]-2-pyridine-4-yl-2,5,5-triethyl-2,5-dihydro-1H-imidazol-oxyl, was found to be the most appropriate for the application in the stomach due to both higher stability and convenient pH sensitivity range from pH 1.8 to 6. LODEPR, FC-DNP and proton-electron double resonance imaging (PEDRI) techniques were used to detect the nitroxide localization and acidity in the rat stomach. Improved probe characteristics allowed us to follow in vivo the drug-induced perturbation in the stomach acidity and its normalization afterwards during 1 h or longer period of time. The results show the applicability of the techniques for monitoring drug pharmacology and disease in the living animals.  相似文献   

14.
Magnetic field modulation in CW electron paramagnetic resonance (EPR) is used for signal detection. However, it can also distort signal lineshape. In experiments where the linewidth information is of particular importance, small modulation amplitude is usually used to limit the lineshape distortion. The use of small modulation amplitude, however, results in low signal-to-noise ratio and therefore affects the precision of linewidth measurements. Recently, a new spectral simulation model has been developed enabling accurate fitting of modulation-broadened EPR spectra in liquids. Since the use of large modulation amplitude (over-modulation) can significantly enhance the EPR signal, the precision of linewidth measurements is therefore greatly improved. We investigated the over-modulation technique in EPR oximetry experiments using the oxygen-sensing probe lithium octa-n-butoxy-substitued naphthalocyanine (LiNc-BuO). Modulation amplitudes 2-18 times the intrinsic linewidth of the probe were applied to increase the spectral signal-to-noise ratio. The intrinsic linewidth of the probe at different oxygen concentrations was accurately extracted through curve fitting from the enhanced spectra. Thus, we demonstrated that the over-modulation model is also applicable to particulate oxygen-sensing probes such as LiNc-BuO and that the lineshape broadening induced by oxygen is separable from that induced by over-modulation. Therefore, the over-modulation technique can be used to enhance sensitivity and improve linewidth measurements for EPR oximetry with particulate oxygen-sensing probes with Lorentzian lineshape. It should be particularly useful for in vivo oxygen measurements, in which direct linewidth measurements may not be feasible due to inadequate signal-to-noise ratio.  相似文献   

15.
微焦点源X射线相衬成像技术   总被引:1,自引:1,他引:1       下载免费PDF全文
 相衬成像方法利用硬X射线对低密度弱吸收物质成像,可获得高衬度图像。用菲涅尔衍射理论分析了X射线图像的形成机理。在频域中根据光学传递函数,对物像距离、样品空间频率等对图像相位衬度的影响进行了分析。分辨率和衬度是决定图像可见度的两个依据,分辨率主要依赖于光源的空间相干性,空间相干性又决定于源点尺寸,而时间相干性(单色性)是一个不重要的影响因子。利用多色微焦点源实现了X射线相衬成像技术,获得了有价值的相衬图像,如低原子序数低密度泡沫材料的硬X射线相衬图像,与吸收衬度成像相比,其图像质量得到了很大提高,能观察到泡沫材料的细微结构,分辨率可达μm量级。  相似文献   

16.
YBCO single-domain samples are suitable for the production of high trapped fields in the range 20–77 K using a cryocooler or liquid nitrogen. But the oxygenation process required to actually transform the single domains into superconductors induces an extensive crack network that is limiting the material performances. Thin-wall geometry has been introduced to reduce the diffusion paths and to enable a progressive oxygenation strategy. As a consequence cracks are drastically reduced. In addition the use of a high oxygen pressure (16 MPa) speeds up further the process by displacing the oxygen–temperature equilibrium towards the higher temperature of the phase diagram. The advantage of thin-wall geometry is that such an annealing can be applied directly to a much larger sample. Remarkable results are obtained without any doping by the combination of thin walls and oxygen high pressure. While classical plain samples yield 300–400 mT, a trapped field of 840 mT has been measured at 77 K on a 16 mm diameter Y123 thin-wall single-domain sample with an annealing time as short as 3 days. Local measurements with a fixed Hall probe on top of the sample were performed at lower temperature after magnetization either in a static field or in a pulse field. The trapped field is significantly higher at lower temperature. Cryocoolers become the key to compromise between performances and cryogenic cost around 40 K.  相似文献   

17.
太赫兹成像技术对玉米种子的鉴定和识别   总被引:6,自引:0,他引:6  
利用太赫兹时域光谱(THz_TDS)测试技术及透射式太赫兹逐点扫描成像技术分别对几种玉米种子DNA和胚的样品进行了光谱和成像测量;利用空间图样成份分析(component spatial pattern analysis)方法对得到的THz像进行识别运算。实验结果表明,几种样品在THz波段都有不同的吸收特性,但都没有明显的吸收峰,不能利用“特征指纹谱”进行识别。用基于THz扫描成像的空间图样成份分析方法能很好地实现不同玉米种子DNA样品的鉴定和识别。与现有的THz图像识别方法相比,这个方法只需要THz像的实验数据和样品的吸收谱信息,不需要样品的其它特征。这项研究为进一步利用THz成像技术实现无损检测、安全检查、质量监测等提供了依据,具有实际应用价值。  相似文献   

18.
Samples of synthetic forsterite doped with chromium and grown in an argon atmosphere with different oxygen concentrations (at a partial pressure of oxygen in the range from 0.03 to 0.78 kPa) have been studied using multifrequency electron paramagnetic resonance (EPR) spectroscopy. It has been demonstrated how the oxidizing properties of the atmosphere during the growth of crystals affect the relative concentration of di-, tri-, and tetravalent chromium ions in the samples. The structure of trivalent chromium impurity centers has been discussed.  相似文献   

19.
The effect of oxygen and iodine on the optical and magnetic properties of fullerite C60 is studied by luminescence and EPR spectroscopy within widely varied experimental conditions (temperature of the medium, oxygen or buffer gas pressure, concentration of iodine vapor). It is demonstrated that the efficiency of the singlet oxygen formation when a fullerene sample is irradiated by a neodymium laser at a wavelength of 532 nm and the amplitude of the EPR signal emitted from the unirradiated sample are strongly affected by the concentrations of both oxygen and iodine vapor sorbed by the fullerene sample, as well as by its surface temperature. The spin-spin and spin-lattice relaxation times of paramagnetic centers in fullerite samples studied in the presence of molecular oxygen are determined by the method of microwave radiation absorption saturation.  相似文献   

20.
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25 K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (±5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature 13C NMR data for two biomolecular samples, namely the peptide Aβ14–23 in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin–lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and 13C MAS NMR linewidths are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号