首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以氮气为背景气体,采用脉冲式微波产生等离子体,使用另外一束连续波作为传输模拟对象,并基于扩散效应的全域模型分析等离子体电子温度与电子密度的演化过程。实验中放电气压为300Pa,实验结果表明:在微波脉冲开始之后极短的时间内,连续波接受信号发生剧烈衰减;而在微波脉冲结束后,连续波接受信号则缓慢恢复。微波传输主要受到等离子体电子密度的影响,而全域模型的计算结果显示等离子体电子密度在开始放电时迅速上升,甚至高于放电微波频率对应的临界密度,在放电微波脉冲结束时电子密度则缓慢下降。这说明开放空间中等离子体在失去能量维持之后,由于扩散效应占主导作用,电子密度不会迅速下降,此时连续波依然会被阻碍,直到电子密度下降到连续波频率对应的临界密度以下。  相似文献   

2.
分别通过Langmuir探针测量和动力学模型模拟方法研究了射频感应耦合Ar-N2等离子体中电子能量分布、电子温度、电子密度等物理量随N2含量的变化规律.实验研究结果表明:电子能量分布呈现出非Maxwell型分布,并由双温分布向三温分布过渡;电子温度在不同的气压下随N2含量的增加呈现出不同的变化规律.在放电气压小于1.3 Pa时,电子温度随N2含量的增加而下降;当气压大于1.3 Pa时,电子温度随N2含量的增加先迅速上升而后缓慢下降.在不同的放电气压下,电子密度随N2含量的增加迅速下降.数值模拟结果与Langmuir探针测量结果趋势一致.  相似文献   

3.
利用脉冲宽度为10 ns,输出波长为1 064 nm的Nd∶YAG激光器作用金属Gd以及纳米粒子掺杂的低密度Gd玻璃等两种形式靶所产生等离子体光源的离带辐射进行了研究,发现等离子体所发出的连续辐射是离带辐射的主要成分,光谱分布与温度为5 eV的普朗克曲线相匹配。此外,相对于金属Gd靶而言,采用纳米粒子掺杂的低密度Gd玻璃靶可大幅度降低等离子体光源的离带辐射。利用光谱法,对激光作用纳米粒子掺杂的低密度Gd玻璃靶所形成光源的等离子体羽的电子温度和电子密度进行了时空分辨研究。实验结果表明,在打靶结束125 ns时,距靶面6 mm位置处等离子体的电子温度约为4 eV,电子密度约为1.2×1018 cm-3。同时发现在激光打靶结束后等离子体羽的电子温度和电子密度随延时的变化而呈指数下降,在120~250 ns时间范围内,两者下降较快,之后其幅度下降缓慢。另一方面,当打靶脉冲结束约200 ns时,在距离靶面1~10 mm的空间内等离子体的电子温度及密度均经历先上升后下降的变化过程。在距靶材表面6 mm位置处,电子温度和电子密度均达到最大值,电子温度约为2.6 eV,电子密度为8.5×1017cm-3。  相似文献   

4.
张秩凡  高俊  雷鹏  周素素  王新兵  左都罗 《物理学报》2018,67(14):145202-145202
光抽运亚稳态稀有气体激光器利用放电等离子体作为激光的增益介质.为掌握容性射频放电的放电参数对等离子体各项参数的影响的基本规律,利用等离子体发射光谱法研究了氦氩混合气体在不同装置、不同Ar组分、不同气压和不同射频注入功率下的等离子体参数.利用残留水蒸气产生的OH自由基A~2Σ~+→X~2Π的转动光谱分析获得气体温度;利用电子态光谱的玻尔兹曼做图法获得电子激发温度,利用Ar原子696.5 nm谱线的斯塔克展宽获得电子密度.结果表明:气体温度随气压增加略微上升,在一个大气压下改变组分和放电功率,气体温度变化不大;电子激发温度随总气压的下降而上升,且随着Ar组分的增加而略微下降;目前放电条件下的电子密度均在10~(15)cm~(-3)量级;长时间放电监测表明,残留的水蒸气会导致电子温度的下降,从而降低Ar亚稳态的产率.  相似文献   

5.
庞佳鑫  何湘  陈秉岩  刘冲  朱寒 《强激光与粒子束》2019,31(3):032002-1-032002-8
针对中等气压、中等功率下射频容性耦合(CCRF)等离子体的放电特性,采用基于流体模型的COMSOL软件仿真,建立一维等离子体放电模型,以Ar为工作气体,研究同一气压时不同射频输入功率下等离子体电子温度和电子密度的分布规律。同时依据仿真模型设计制作相同尺寸的密闭玻璃腔体和平板电极,实验测量了不同射频输入功率时放电等离子体的有效电流电压及发射光谱,进而计算等离子体的电子温度及电子密度;利用玻耳兹曼双线测温法,得到光谱法下等离子体的电子温度及电子密度。结果表明:当气体压强为250 Pa、输入功率为100~450 W时,等离子体电压电流呈线性关系,电子密度随功率的增大而增大,而电子温度并未随功率的变化而有明显变化,其与功率无关。运用仿真模拟验证了实验的准确性,通过比较,三种方法所得的结果相近。通过结合等效回路法、光谱法和数值模拟仿真法初步诊断出中等气压下等离子体的放电参数,提出了结合三种方法作为实验研究的方法,使实验结果更具说服力,证明其方法的可靠性,也为进一步的等离子体特性研究提供依据。  相似文献   

6.
 研究了气压对双射频氩氧混合等离子体电子温度和电子密度的影响。在13.56MHz低频功率和94.92MHz高频功率固定为60W和氩氧气体比为1:9的情况下,利用发射光谱法分析了气压不同时氩氧混合等离子体的放电光谱中的特征谱线的变化规律。使用一维质点网格法(PIC-MC)静电模型计算了电子温度和电子密度。结果表明:电子温度随着气压的增加先降低后升高,与实验结果趋势相吻合;电子密度随着气压的增加先增大后减小。  相似文献   

7.
远程等离子体可以有效避免电子与离子碰撞产生的刻蚀作用,加强自由基反应,取得更好的改性效果,在膜材料领域具有重要的应用价值。为了更加深入研究远程等离子体中电子状态及其变化规律,采用发射光谱法对远程Ar等离子体进行了诊断,研究了射频功率、反应腔室内压强、距放电中心距离对远程Ar等离子体发射光谱强度、电子密度和电子温度的影响。结果表明,在690~890 nm区域中特征峰较为集中,由ArⅠ原子谱线占主导,且谱线强度的变化规律和电子密度的变化规律相同。通过玻尔兹曼斜率法选取3条ArⅠ谱线计算了不同放电参数下的电子温度。电子温度随射频功率、反应腔室内压强、距放电中心距离的改变而改变。射频功率从30 W增加到150 W时,电子温度从3 105.39 K降低至2 552.91 K。压强从15 Pa增加到25 Pa时,电子温度从3 066.53 K降低到2 593.32 K,当压强继续增加到35 Pa时,电子温度则增加至2 661.71 K。在距放电中心0~10 cm处由于等离子体电位增大,电子温度上升,而10 cm后电子温度不断下降在距放电中心80 cm处趋于0 K。通过分析ArⅠ696.894谱线的...  相似文献   

8.
张改玲  滑跃  郝泽宇  任春生 《物理学报》2019,68(10):105202-105202
通过Langmuir双探针和发射光谱诊断方法,对比研究了驱动频率为13.56 MHz和2 MHz柱状感性耦合等离子体中电子密度和电子温度的径向分布规律.结果表明:在高频和低频放电中,输入功率的增加对等离子体参数产生了不同的影响,高频放电中主要提升了电子密度,低频放电中则主要提升了电子温度.固定气压为10 Pa,分别由高频和低频驱动时,电子密度的径向分布均为"凸型".而电子温度的分布差异比较明显,高频驱动时,电子温度在腔室中心较为平坦,在边缘略有上升;低频驱动时,电子温度随径向距离的增加而逐渐下降.为了进一步分析造成这种差异的原因,在相同放电条件下采集了氩等离子体的发射光谱图,利用分支比法计算了亚稳态粒子的数密度,发现电子温度的径向分布始终与亚稳态粒子的径向分布相反.继续升高气压到100 Pa,发现不论高频还是低频放电,电子密度的径向分布均从"凸型"转变为"马鞍形",较低气压时电子密度的均匀性有了一定的提升,但低频的均匀性更好.  相似文献   

9.
使用电感耦合放电装置和拍型明泡,以氩-汞混合气体作为工作气体,在低气压下点亮了无极灯.利用发射光谱法,研究了无极灯点灯5s时的电子温度和电子密度随轴向和径向位置的变化规律.等离子体电子温度变化通过分析Ar原子425.9和750.4nm谱线强度比值获得,等离子体电子密度的变化通过分析Ar原子750.4nm谱线强度变化得到...  相似文献   

10.
在EAST上使用相关电子回旋辐射(CECE)诊断系统观测到不同等离子体参数下的电子温度涨落特征,介绍了欧姆放电、L模放电及无ELM的H模放电的三种现象。在欧姆密度爬升等离子体中,电子温度涨落与电子密度之间表现出很强的相关性,即存在电子温度涨落处于较高水平的电子密度的窗口。初步分析表明,电子温度涨落变化是电子密度梯度和电子温度梯度共同影响的结果。不同辅助加热下的L模等离子体中,电子温度涨落的频谱表现出不同的行为。由于电子回旋共振加热(ECRH)的功率有限,其对电子温度的改变很小,而中性束注入(NBI)有较高的注入功率,能够明显提升电子温度,加热方式及加热功率大小引起的电子温度变化与电子温度涨落变化相关。在没有边缘局域模(ELM)的H模期间,可以观测到频率为18kHz的准相干模,其存在于归一化半径ρ=0.71~0.87较宽的径向范围内。  相似文献   

11.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

12.
等离子体气动激励机理数值研究   总被引:4,自引:0,他引:4       下载免费PDF全文
程钰锋  聂万胜  李国强 《物理学报》2012,61(6):60509-060509
基于介质阻挡与准直流电弧放电的物理过程, 分析了它们的气动激励机理, 建立了各自的气动激励模型, 并分别研究了它们对低速和超声速流动的激励效果. 结果显示: 介质挡板放电等离子体气动激励机理是改变了连续流体中的三种力, 即由牛顿内摩擦引起的剪切应力、由电动力学引起的体积力及由压力突变引起的冲击力, 其中基于电动力学的体积力效应占主导地位; 临近空间环境中体积力的作用效果更强, 诱导速度更大; 超声速来流下准直流电弧放电气动激励机理主要是等离子体的热阻塞效应, 本文所建立的爆炸丝传热模型可以用于仿真其控制激波的过程; 热电弧对于超声速来流而言就像一个具有一定斜坡角度的虚拟突起, 可用于高超声速飞行器前体激波的控制.  相似文献   

13.
由于具有工作气压高、放电均匀等特点,大气压介质阻挡放电成为近年来非平衡等离子体领域研究的主要技术。电极结构是电离特性的主要影响因素之一,因此,通过电极结构优化来改善电离特性,对等离子体放电设备的应用领域拓展及性能优化至关重要。为改善大气压介质阻挡放电的电离特性,产生高活性、高均匀性的低温等离子体,基于自主设计的同轴介质阻挡放电装置进行了不同电极结构的电离试验及参数诊断;在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV条件下进行了氩气电离试验;采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;研究了螺纹电极、齿状电极、圆柱电极放电的特征光谱参数及外施电压对介质阻挡放电特征参数的影响。结果表明,齿状电极放电所形成等离子体的放电强度更大且放电效果显著,电子平均能量利用率低,电子激励温度弱于圆柱电极;圆柱电极放电强度较弱,但易形成大面积均匀性等离子体;大气压环境下电子激励温度不因外源电压的升高而单调递加,这表明通道内微放电的主要特征并不依赖于外施电压的供给,而是取决于电极结构、气体组份、气体压强;增大外施电压仅能增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K,符合典型的低温等离子体特征。  相似文献   

14.
In this paper the removal of the microbial contamination from paper material using the plasma treatment at atmospheric pressure is investigated. The Aspergillus niger has been chosen as a bio-indicator enabling to evaluate the effect of plasma assisted microbial inactivation. Dielectric barrier discharge (DBD) operated at atmospheric pressure was used for the paper sterilization. The working gas (nitrogen, argon and helium), plasma exposition time and the plasma power density were varied in order to see the effect of the plasma treatment on the fungi removal. After the treatment, the microbial abatement was evaluated by the standard plate count method. This proved a positive effect of the DBD plasma treatment on fungi removal. Morphological and colorimetric changes of paper substrate after plasma treatment were also investigated.  相似文献   

15.
大气压氖气介质阻挡放电脉冲等离子射流特性   总被引:3,自引:3,他引:0       下载免费PDF全文
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(5):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

16.
利用可调谐二极管激光吸收光谱技术对低气压氩气介质阻挡放电等离子体进行诊断,重点考察了Ar亚稳态1s5和1s3的数密度和气体温度随放电电压,气压,流量,极板间距,以及随N2配比的变化情况。实验基于朗伯-比尔(Lambert-Beer)定律,通过计算吸收谱线的吸收峰面积求取Ar亚稳态的数密度,同时对谱线进行Voigt拟合得到多普勒展宽,进而求出气体温度。Ar亚稳态主要由电子碰撞产生,但同时电子也会碰撞亚稳态发生猝灭作用,从而使数密度减少;气体温度则与等离子体的实际功率、电子的状态以及粒子之间的碰撞有关。实验结果表明在本实验条件范围内,Ar亚稳态数密度和气体温度随放电电压和流量的增大都先增大,之后逐渐趋于平缓,但两者随流量的变化幅度都较之随放电电压的小,增长较缓慢。随气压的升高,Ar亚稳态数密度和气体温度先增加并达到一个极大值,而之后逐渐降低。实验数据表明,气压对谱线展宽有较明显的影响作用。适当增大极板间距,Ar亚稳态数密度明显降低,但气体温度却有所升高。N2的加入对亚稳态有很强的猝灭作用,0.5%的N2就会使数密度下降50%,但随着N2浓度的进一步增大,其数密度不再明显降低。  相似文献   

17.
常压窄间隙介质阻挡放电等离子体辐射特性   总被引:1,自引:0,他引:1  
利用带有透明电极与可测向观察的一个介质阻挡放电(DBD)实验装置对它的常压窄间隙等离子体辐射特性进行了实验研究。结果表明:这一DBD装置的辐射特性会受激励电压、激励频率、DBD结构等多种因素影响。在频率为10~20kHz高压电源激励下,采用窄间隙、薄电介质层结构DBD可以大幅度提高放电空间的电场强度,增加放电功率密度,提高了放电装置性能。  相似文献   

18.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

19.
对未燃烧的可燃混合气体进行DBD放电,放电后会产生大量的活性粒子,这些活性粒子可以辅助气体燃烧,达到提高燃料燃烧利用率等目的。以DBD激励氩气、甲烷、空气产生的自由基(CH基和OH基)等强化燃烧的关键活性粒子为探索对象,研究DBD放电激励甲烷对滑动弧火焰的影响。为此,采用自主设计的DBD-滑动弧双模式等离子体激励器,利用同轴介质阻挡放电结构对氩气、甲烷、空气混合气进行放电激励,将激励后的氩气、甲烷、空气混合气通入滑动弧端进行点火。固定氩气流量不变,调整空气流量为4.76 L·min-1,并加入甲烷0.5 L·min-1,保证进气通道内氩气与空气-甲烷的气体体积流量比达到Ar∶(CH4+Air)=1∶30,其中空气、甲烷这两种气体达到了化学燃烧当量比φ=1,氩气、甲烷、甲烷混合气体能实现均匀而稳定的放电并燃烧。DBD段放电电压在15~20 kV范围变化,放电频率在6~10 kHz范围变化,滑动弧段的电压和频率分别保持4 kV与10 kHz恒定,通过改变DBD段放电电压和放电频率,用高速光纤光谱仪检测滑动弧火焰中自由基种类及其光谱强度,分析放电参数激励甲烷对火焰中自由基(CH基和OH基)的影响。结果表明,DBD段放电电压及放电频率的增加可以促进火焰内部的偶联反应发生,可有效提升甲烷滑动弧火焰内部的活性粒子含量,其中OH基团、CH基团在燃烧链式化学反应进程中发挥着较为重要的作用。甲烷经过DBD激励后,随放电电压和频率的增加,火焰中OH基、CH基等主要活性粒子都随之增加。DBD放电后,活性粒子的光谱强度增大,特征谱线比单模式更加明显;甲烷经过DBD激励后,火焰组成发生了变化,滑动弧段出口处甲烷燃烧反应更加充分,火焰温度越高越容易产生OH基。与单模式滑动弧相比,双模式放电可有效促进火焰内部的链式化学反应进程,促进燃料燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号