首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research article, a hydrogel was prepared by crosslinking of carboxymethyl cellulose‐g‐polyacrylamide copolymer aqueous solution with chromium(III) acetate for the purpose of a water shutoff job in the oil reservoir. The experiments were conducted to investigate the main effects of copolymer concentration and crosslinker/copolymer ratio on gelation time of the hydrogel system. Then the effects of these two factors and their interactions on the gelation time were determined by using a central composite design (CCD) of the response surface method. CCD was used to generate the quadratic mathematical model for the gelation time response as a function of copolymer concentration, crosslinker/copolymer ratio, and their interaction. Furthermore, the analysis of variance (ANOVA) was used to evaluate the quality of the quadratic model. The ANOVA result of the developed model showed that the model was highly significant. The result also showed that the crosslinker/polymer ratio had more effects on the gelation time than did the polymer concentration and their interaction. A response surface method provides an optimum gel formulation. Core flooding experiments reveal that a significant permeability reduction on the sand pack cores can be achieved at reservoir conditions, when it is treated with an optimum gel formulation. Hence, this gel system may be suitable in the water shutoff job required for enhanced oil recovery from the oil fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A protein-based hydrogel with tunable gelation time and mechanical strength was obtained by the hydrogelation of soy protein isolate (SPI) in the presence of microbial transglutaminase (MTGase). In order to control the gelation process and understand the relationship between the property and network structure of the formed SPI hydrogel, the changes of viscoelastic properties with time during the gelation process were monitored by the use of dynamic rheometry. The measurements were carried out at different protein concentrations, enzyme amounts, and reaction temperatures to clarify their effects on the gelation kinetics. In particular, the fractal characteristics of the SPI hydrogels formed in the presence and absence of MTGase were examined by relating the rheological data to a scaling model. In addition, the resultant SPI hydrogel matrix was investigated for the controlled release of 5-aminosalicylic acid as the model drug.  相似文献   

3.
Insight is provided into the aggregation thermodynamics associated to hydrogel formation by molecular gelators derived from L ‐valine and L ‐isoleucine. Solubility data from NMR measurements are used to extract thermodynamic parameters for the aggregation in water. It is concluded that at room temperature and up to 55 °C, these systems form self‐assembled fibrillar networks in water with quite low or zero enthalpic component, whereas the entropy of the aggregation is favorable. These results are explained by considering that the hydrophobic effect is dominant in the self‐assembly. However, studies by NMR and IR spectroscopy reveal that intermolecular hydrogen bonding is also a key issue in the aggregation process of these molecules in water. The low enthalpy values measured for the self‐assembly process are ascribed to the result of a compensation of the favorable intermolecular hydrogen‐bond formation and the unfavorable enthalpy component of the hydrophobic effect. Additionally, it is shown that by using the hydrophobic character as a design parameter, enthalpy‐controlled hydrogel formation, as opposed to entropy‐controlled hydrogel formation, can be achieved in water if the gelator is polar enough. It is noteworthy that these two types of hydrogels, enthalpy‐versus entropy‐driven hydrogels, present quite different response to temperature changes in properties such as the minimum gelator concentration (mgc) or the rheological moduli. Finally, the presence of a polymorphic transition in a hydrogel upon heating above 70 °C is reported and ascribed to the weakening of the hydrophobic effect upon heating. The new soft polymorphic materials present dramatically different solubility and rheological properties. Altogether these results are aimed to contribute to the rational design of molecular hydrogelators, which could be used for the tailored preparation of this type of soft materials. The reported results could also provide ground for the rationale of different self‐assembly processes in aqueous media.  相似文献   

4.
Gelation mechanism is of utmost importance to the rational design of supramolecular hydrogelators. Although both kinetic and thermodynamic controlled self‐assembly processes have been widely studied in hydrogels, the formation relationship between crystalline and amorphous gel networks still remains ambiguous. Herein, a gelation transformation from a kinetic to a thermodynamic process was achieved by balancing the rigidity and flexibility of the inorganic–organic co‐assemblies. By using polyoxometalates and zwitterionic amphiphiles, the transition morphologies between crystalline and amorphous hydrogel networks were evidenced for the first time, as ordered wormlike micelles. Given the versatile applications of hydrogels in biological systems and materials science, these findings may highlight the potential of inorganic–organic binary supramolecular hydrogelators and fill in the blank between kinetic and thermodynamic controlled gelation processes.  相似文献   

5.
The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.  相似文献   

6.
The time rates of change of level populations and radiation densities derived from a detailed kinetic model of the F + H2 → HF + H laser are employed as input data for a time dependent thermodynamic analysis of this system. The laser is regarded as an irreversible heat engine generating thermodynamic work in the form of laser light. The development in time of the thermodynamic functions, efficiency and irreversible entropy production is determined by computing the contributions of pumping, radiation and relaxation to the entropy and energy of the lasing molecules. Effects of specific rate processes are evaluated by considering different kinetic schemes, i.e. different combinations of kinetic processes and initial conditions. It is shown, among others, that a laser without relaxation processes (“frictionless”) has poor efficiency despite the absence of energy losses and the low irreversible entropy production. On the other hand, the efficiency is high in lasers governed by fast rotational relaxation. This is because rotational relaxation, though leading to some energy losses and irreversible entropy production, compensates for the entropy decrease of the system (while lasing under partially inverted populations) by increasing the bath entropy. The major general conclusion of the analysis is that the thermodynamic constraints related to the kinetic scheme and not the extent of irreversibility of the lasing process is the crucial factor in determining the laser efficiency.  相似文献   

7.
8.
The structural phases of Al(x)Na(1-x) surface alloys have been investigated theoretically and experimentally. We describe the system using a lattice-gas Hamiltonian, determined from density functional theory, together with Monte Carlo (MC) calculations. The obtained phase diagram reproduces the experiment on a quantitative level. From calculation of the (configurational) density of states by the recently introduced Wang-Landau MC algorithm, we derive thermodynamic quantities, such as the free energy and entropy, which are not directly accessible from conventional MC simulations. We accurately reproduce the stoichiometry, as well as the temperature at which an order-disorder phase transition occurs, and demonstrate the crucial role, and magnitude, of the configurational entropy.  相似文献   

9.
We show that consistency of the transition probabilities in a lattice Monte Carlo (MC) model for binary crystal growth with the thermodynamic properties of a system does not guarantee the MC simulations near equilibrium to be in agreement with the thermodynamic equilibrium phase diagram for that system. The deviations remain small for systems with small bond energies, but they can increase significantly for systems with large melting entropy, typical for molecular systems. These deviations are attributed to the surface kinetics, which is responsible for a metastable zone below the liquidus line where no growth occurs, even in the absence of a 2D nucleation barrier. Here we propose an extension of the MC model that introduces a freedom of choice in the transition probabilities while staying within the thermodynamic constraints. This freedom can be used to eliminate the discrepancy between the MC simulations and the thermodynamic equilibrium phase diagram. Agreement is achieved for that choice of the transition probabilities yielding the fastest decrease of the free energy (i.e., largest growth rate) of the system at a temperature slightly below the equilibrium temperature. An analytical model is developed, which reproduces quite well the MC results, enabling a straightforward determination of the optimal set of transition probabilities. Application of both the MC and analytical model to conditions well away from equilibrium, giving rise to kinetic phase diagrams, shows that the effect of kinetics on segregation is even stronger than that predicted by previous models.  相似文献   

10.
The entropy of a system transiently driven out of equilibrium by a time-inhomogeneous stochastic dynamics is first expressed as a transient response function generalizing the nonlinear Kawasaki-Crooks response. This function is then reformulated into three statistical averages defined over ensembles of nonequilibrium trajectories. The first average corresponds to a space-time thermodynamic perturbation relation, while the two following ones correspond to space-time thermodynamic integration relations. Provided that trajectories are initiated starting from a distribution of states that is analytically known, the ensemble averages are computationally amenable to Markov chain Monte Carlo methods. The relevance of importance sampling in path ensembles is confirmed in practice by computing the nonequilibrium entropy of a driven toy system. We finally study a situation where the dynamics produces entropy. In this case, we observe that space-time thermodynamic integration still yields converged estimates, while space-time thermodynamic perturbation turns out to converge very slowly.  相似文献   

11.
The effects of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the gelation of methylcellulose (MC) in aqueous solutions have been investigated by micro differential scanning calorimetry (micro DSC) and rheology. Methylcellulose had a weight average molecular weight of 310,000 and a degree of substitution of 1.8. The concentration of MC was kept at 0.5 wt % (0.016 mM) and 1 wt % (0.032 mM), and the concentration of CTAB in the MC solutions was varied from 0 to 0.6 wt % (16.5 mM). Upon heating, a single endothermic peak, which is due to the hydrophobic association and gelation of MC, shifts to lower temperatures with increasing CTAB for CTAB < or = CMC (0.93 mM or 0.034 wt %), and then it shifts to higher temperatures lineally with CTAB for CTAB > CMC. At the same time, the endothermic enthalpy decreases with increasing CTAB concentration. Even though CTAB shows a significant "salt-in" effect on the gelation of MC, it does not affect the pattern of the sol-gel transition as well as the gel strength of MC. At the highest concentration of CTAB, 0.60 wt %, MC is still able to form a gel. At a given ratio of CTAB/MC, the effect of CTAB on MC becomes stronger when the MC concentration is lower. The results for the MC-CTAB system are compared with an ionic surfactant, SDS and the significant differences in affecting the gelation of MC between two surfactants are recognized.  相似文献   

12.
Injectable hydrogels have been considered as promising materials for bone regeneration,but their osteoinduction and mechanical performance are yet to be improved.In this study,a novel biocompatible injectable and self-healing nano hybrid hydrogel was on-demand prepared via a fast(within 30 s) and easy gelation approach by reversible Schiff base formed between-CH=O of oxidized sodium alginate(OSA) and-NH_2 of glycol chitosan(GCS) mixed with calcium phosphate nanoparticles(CaP NPs).Its raw materials can be ready in large quantities by a simple synthesis process.The mechanical strength,degradation and swelling behavior of the hydrogel can be readily controlled by simply controlling the molar ratio of-CH=O and-NH_2.This hydrogel exhibits pH responsiveness,good degradability and biocompatibility.The hydrogel used as the matrix for mesenchymal stem cells can significantly induce the proliferation,differentiation and osteoinduction in vitro.These results showed this novel hydrogel is an ideal candidate for applications in bone tissue regeneration and drug delivery.  相似文献   

13.
This article provides detailed insight into the thermoresponsive gelation mechanism of industrially produced methylcellulose (MC), highlighting the importance of diblock structure with a hydrophobic sequence of 2,3,6-tri-O-methyl-glucopyranosyl units for this physicochemical property. We show herein, for the first time, that well-defined diblock MC self-assembles thermoresponsively into ribbonlike nanostructures in water. A cryogenic transmission electron microscopy (cryo-TEM) technique was used to detect the ribbonlike nanostructures formed by the diblock copolymers consisting of hydrophilic glucosyl or cellobiosyl and hydrophobic 2,3,6-tri-O-methyl-cellulosyl blocks, methyl β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 1 (G-236MC, DP(n) = 10.7, DS = 2.65), and methyl β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-celluloside 2 (GG-236MC, DP(n) = 28.2, DS = 2.75). Rheological measurements revealed that the gel strength of a dispersion of GG-236MC (2, 2.0 wt %) in water at 70 °C was 3.0 times stronger than that of commercial MC SM-8000, although the molecular weight of GG-236MC (2) having M(w) = 8 × 10(3) g/mol was 50 times smaller than that of SM-8000 having M(w) = 4 × 10(5) g/mol. Cryo-TEM observation suggested that the hydrogel formation of the diblock copolymers could be attributed to the entanglement of ribbonlike nanostructures self-assembled by the diblock copolymers in water. The cryo-TEM micrograph of GG-236MC (2) at 5 °C showed rectangularly shaped nanostructures having a thickness from 11 to 24 nm, although G-236MC (1) at 20 °C showed no distinct self-assembled nanostructures. The ribbonlike nanostructures of GG-236MC (2) having a length ranging from 91 to 864 nm and a thickness from 8.5 to 27.1 nm were detected above 20 °C. Small-angle X-ray scattering measurements suggested that the ribbonlike nanostructures of GG-236MC (2) consisted of a bilayer structure with a width of ca. 40 nm. It was likely that GG-236MC (2) molecules were oriented perpendicularly to the long axis of the ribbonlike nanostructure. In addition, wide-angle X-ray scattering measurements revealed that GG-236MC (2) in its hydrogel formed the same crystalline regions as 2,3,6-tri-O-methylcellulose. The influence of the DP of diblock MC with a DS of around 2.7 on the gelation behavior will be discussed.  相似文献   

14.
生物膜为液晶态磷脂双分子层结构, 其中蛋白质镶嵌在生物膜上, 处于脂质环境中, 因此药物膜的转运、 药物接近膜中蛋白质以及随后结合过程等均与药物和生物膜间的相互作用有着密切联系. 药物的膜/水分配系数(Km)是评价药物与生物膜间相互作用的定量参数, 为药物与生物膜间各种分子作用力的总和, 包括静电、 氢键和疏水等作用力及立体效应等[1,2]. 药物与生物膜间相互作用的评价系统一直是研究中的热点. 最初正辛醇/水系统为模型分配系统, 但是由于其不是理想的生物膜模拟相, 因此不能用来准确描述药物与生物膜间的相互作用. 最近出现的磷脂膜色谱可较好地模拟细胞膜有序磷脂层的空间环境, 因此在评价药物与生物膜间的相互作用、 预测药物跨膜转运以及生物活性上均明显优越于正辛醇/水系统[3]. 虽然我们已证明这两个系统在亲脂性测量尺度上存在明显差别, 但是并没有说明溶质与两个生物膜模拟相的相互作用机制的差别[4]. 本文考察了温度对溶质分子在这两个分配系统中分配的影响, 并从溶质分配过程中的熵变和焓变的角度对这两个分配系统进行了比较.  相似文献   

15.
曾蓉  冯志程  SMITH Ray  邵正中  陈新  杨宇红 《化学学报》2007,65(21):2459-2465
采用变温核磁共振技术对壳聚糖/磷酸甘油盐温敏性水凝胶体系的凝胶化过程进行跟踪研究. 实验结果表明, 壳聚糖中氢和磷酸甘油盐中磷的化学位移均随着温度的升高而变化, 其中壳聚糖中氢的化学位移向高场移动而磷酸甘油盐中磷的化学位移向低场移动. 在凝胶温度附近, 壳聚糖中H-2(D)的化学位移变化出现转折点, 表明其所处的化学环境发生了突变. 随着体系中磷酸甘油盐含量的增加或者pH值的增大, 壳聚糖中H-2(D)的化学位移愈加偏向高场, 体系的凝胶温度则越低. 由此, 我们提出如下壳聚糖/磷酸甘油盐温敏性水凝胶的凝胶机理: 随着温度的升高, 壳聚糖通过氨基正离子与磷酸甘油盐形成的静电吸引被破坏, 随之由于壳聚糖分子链间形成大量氢键而发生凝胶化.  相似文献   

16.
Calorimetric measurement of adsorption enthalpies of native lysozyme(Lyz) on a moderately hydrophobic surface at 25°C, pH 7.0 and various salt concentrations was performed. Based on the thermodynamics of stoichiometric displacement theory (SDT), we calculated the fractions of thermodynamic functions involving four subprocesses during a displacement adsorption process from the directly determined enthalpies in combination with adsorption isotherm measurements. The thermodynamic fractions reveal the relative degree of the four subprocesses for contributions to enthalpy, entropy and free energy. The results show that native Lyz adsorption on a moderately hydrophobic surface is an entropy driven process contributed mainly by conformational loss of adsorbed Lyz.  相似文献   

17.
Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.  相似文献   

18.
This research article deals with the synthesis of carboxymethyl cellulose-g-polyacrylamide copolymer and its suitability for the development of hydrogel system using cross-linker. The hydrogels were prepared using different concentrations of synthesized graft copolymer and chromium(III) acetate cross-linker. The gelation and rheological behaviors of this gel system were thoroughly studied. It was experimentally observed that the prepared hydrogels exhibit an acceptable gel strength and gelation time. The graft polymeric gel using 10,000 ppm copolymer and 2000 ppm chromium(III) acetate cross-linker could be deformed up to 7690% without tearing of the gel network in the range of 0.1–10,000% strain. These observations show the potential of the developed hydrogel system for its application as sealant during water shutoff jobs in oil reservoir.  相似文献   

19.
Cyclic voltammetric (CV) investigations on the properties of microdomains in polysaccharide hydrogels, methyl cellulose (MC) and kappa-carrageenan (CAR), coated on glassy carbon electrodes were reported in which methylene blue (MB), tris(1,10-phenanthroline)cobalt(III) (Co(phen)3(3+/2+)) cations, and ferricyanide/ferrocyanide (Fe(CN)6(3-/4-)) anions were used as electroactive probes. Information on the patterns and strength of intermolecular interactions in these polysaccharide hydrogels can be inferred from the net shift of normal potentials (E degrees'), the change of peak currents (ip), the ratio of binding constants (K(red)/K(ox)) for reduced and oxidized forms of bound species, and the apparent diffusion coefficients (D(app)) of probe in hydrogels. The transition of hydrophobic interaction in MC hydrogel with temperature was manifested by the CV method, which is in agreement with the evolution of the storage modulus (G') during gelation. It was also found that, in addition to inducing the change of E degrees' and ip of these probes used, the hydrophobic-hydrophilic nature of the microenvironment in hydrogels coated on the substrate electrodes greatly influenced the peak-peak separation (DeltaEp) of MB and the redox reversibility of Fe(CN)6(3-/4-) via modulation of both the heterogeneous electron-transfer process at the gel-substrate interface and the charge-transfer process in hydrogels. The results imply that the CV method is of significant benefit to the understanding of the gelation driving forces in the polysaccharide hydrogels at a molecular level.  相似文献   

20.
In this work, cationic block copolymer (F-68-PLL) composed of Pluronic F-68 and poly(L-lysine) segments was first prepared for the binding with plasmid DNA due to the electrostatic interaction between poly(L-lysine) segments and plasmid DNA, and subsequently used to interact with α-cyclodextrin (α-CD) in aqueous system for the supramolecular gelation by the inclusion complexation between Pluronic F-68 segments and α-CD. It was found that such a fabrication process could lead to the in situ entrapment of plasmid DNA into the supramolecular hydrogel matrix under mild conditions. Depending on the amounts of F-68-PLL and α-CD, the resultant hybrid hydrogel was found to have adjustable gelation time and mechanical strength. For the plasmid DNA complexes released from the supramolecular hydrogel, controlled release and sustained gene transfection were confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号