首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel energetic combustion catalyst, 1,8-dihydroxy-4,5-dinitroanthraquinone manganese salt (DHDNEMn), was synthesized by virtue of the metathesis reaction in a yield of 91%, and its structure was characterized by IR, element analysis and differential scanning calorimetry(DSC). The thermal decomposition reaction kinetics was studied by means of different heating rate DSC. The results show that the apparent activation energy and pre-exponential factor of the exothermic decomposition reaction of DHDNEMn obtained by Kissinger's method are 162.3 kJ/mol and 1011.8 s^-1, respectively. The kinetic equation of major exothermic decomposition reaction of DHDNEMn is dα/dT= 10^118/β 2/5(1-α)[-ln(1-α)[-ln(1-α)]^3/5 exp(-1.623×10^5/RT). The entropy of activation(△S^≠), enthalpy of activation(△H^≠) and free energy of activation(A△G^≠) of the first thermal decomposition are -24.49 J·mol^-1·K^-1, 185.20 kJ/mol and 199.29 kJ/mol(T=575.5 K), respectively. The self-accelerating decomposition temperature(TSADT) and critical temperature of thermal explosion(Tb) are 562.9 and 580.0 K, respectively. The above-mentioned information on the thermal behavior is quite useful for analyzing and evaluating the stability and thermal safety of DHDNEMn.  相似文献   

2.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

3.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N-methyl-N-nitro-2,2,2-trinitroethanamine in a temperature-programmed mode have been investigated by means of differential scanning calorimetry (DSC).The kinetic equation of the exothermic decomposition process of the compound is proposed. The values of the apparent activation energy (Ea), pre-exponential factor (A), entropy of activation (ΔS^≠ ), enthalpy of activation (ΔH^≠ ), and free energy of activation (ΔG^≠ ) of this reaction and the critical temperature of thermal explosion of the compound are reported. Information is obtained on the mechanism of the initial stage of the thermal decomposition of the compound.  相似文献   

4.
草酸镁二水合物的非等温热分解动力学   总被引:1,自引:0,他引:1  
张建军  任宁  白继海 《中国化学》2006,24(3):360-364
The thermal decomposition of the magnesium oxalate dihydrate in a static air atmosphere was investigated by TG-DTG techniques. The intermediate and residue of each decomposition were identified from their TG curve. The kinetic triplet, the activation energy E, the pre-exponential factor A and the mechanism functionsf(a) were obtained from analysis of the TG-DTG curves of thermal decomposition of the first stage and the second stage by the Popesou method and the Flynn-Wall-Ozawa method.  相似文献   

5.
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.  相似文献   

6.
The thermal behavior, mechanism and kinetic parameters of the exothermic first-stage decomposition of the title compound in a temperature-programmed mode were investigated by means of DSC, TG-DTG and IR. The reaction mechanism was proposed. The kinetic model function in differential form, apparent activation energy(Ea) and pre-exponential factor(A) of this reaction are (3/2)(1-a)[-ln(1-a)]1/3, 185.52 kJ/mol and 1017.78 s-1, respectively. The critical temperature of the thermal explosion of the compound is 201.30 ℃. The values of ΔS≠, ΔH≠ and ΔG≠ of this reaction are 72.46 J/(mol · K), 175.1 kJ/mol and 141.50 kJ/mol, respectively.  相似文献   

7.
<正>The thermal decomposition behavior of composite modified double-base(CMDB) propellant containing cyclotrimethylene trinitramine(RDX) was studied via a Calvet microcalorimeter at five different heating rates.The activation energy(E) and the pre-exponential factor(A) of two obvious exothermic processes were obtained by Kissinger's method and Ozawa's method.The entropy of activation(△A~≠),the enthalpy of activation(△H~≠),and the free energy of activation(△G~≠) of the first stage were calculated.To evaluate the thermal hazard of the RDX-CMDB propellant, the critical temperature of thermal explosion(T_b),the self acceleration decomposition temperature(T_(SADT)),the adiabatic decomposition temperature increment(△T_(ad)) and the time-to-explosion of adiabatic system(t) were presented as 145.3℃,138.15℃,1634 K and 583.71 s(n=0) and 586.28 s(n=1),respectively.  相似文献   

8.
The thermal behaviour and decomposition reaction kinetics of benzotrifuroxan (BTF) were determined by TG and DSC techniques. The kinetic parameters of the exothermic decomposition reaction in a temperature programmed mode (the apparent activation energy Ea and pre-exponential factor A) were calculated by a single non-isothermal DSC curve. The E values calculated using the Kissinger and Flynn-Wall-Ozawa equations and integral isoconversional non-linear equations were used to check the validity of activation energy by a single non-isothermal DSC curve. The results show that the kinetic model function in integral form and the values of Ea and A of the decomposition reaction of BTFare , 109.95 kJ•mol-1 and 108.16 s-1, respectively. The values of ∆S≠, ∆H≠ and ∆G≠ of this reaction are -93.15 J•mol-1•K-1, 150.72 kJ•mol-1 and 153.15 kJ•mol-1, respectively. The critical temperature of thermal explosion of BTF is 257.33 ℃.  相似文献   

9.
Polystyrene/iron-nickel (PS/FeNi3) nanocomposites were synthesized via an in-situ polymerization route and characterized by XRD,SEM and FTIR. FeNi3 nanoparticles were characterized by TEM and XRD. The pure FeNi3 nanoparticles (100~125 nm) were highly clustered and percolated through the PS matrix. When the content of FeNi3 nanoparticles reached 5 wt%,an interaction between FeNi3 nanoparticles and PS matrix was observed. The thermal decomposition behavior of PS/FeNi3 nanocomposites was investigated by thermal analysis. The activation energies (E) and pre-exponential factors (lnA) were calculated by using Archar method. The results show that the thermal decomposition of pure PS is a one-dimensional diffusion mechanism. A three-dimensional diffusion mechanism appears when FeNi3 nanoparticles incorporate. The E of PS/FeNi3 nanocomposites with different FeNi3 contents is 217.5,225.3,180.6 and 73.0 kJ·mol-1,and the corresponding lnA is 35.6,34.9,27.5 and 10.4 S-1,respectively.  相似文献   

10.
The enthalpy change of formation of the reaction of hydrous dysprosium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol at 298.15 K has been determined as (-16.12±0.05) kJ·mol-1 by a microcalor-meter. Thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), rate constant and kinetics parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of the reaction have also been calculated. The enthalpy change of the solid-phase reaction at 298.15 K has been obtained as (53.59±0.29) kJ·mol-1 by a thermochemistry cycle. The values of the enthalpy change of formation both in liquid-phase and solid-phase reaction indicated that the complex could only be synthesized in liquid-phase reaction.  相似文献   

11.
Ammonium magnesium phosphate monohydrate NH4MgPO4·H2O was prepared via solid state reaction at room temperature and characterized by XRD, FT-IR and SEM. Thermochemical study was performed by an isoperibol solution calorimeter, non-isothermal measurement was used in a multivariate non-linear regression analysis to determine the kinetic reaction parameters. The results show that the molar enthalpy of reaction above is (28.795 ± 0.182) kJ/mol (298.15 K), and the standard molar enthalpy of formation of the title complex is (-2185.43 ± 13.80) kJ/mol (298.15 K). Kinetics analysis shows that the second decomposition of NH4MgPO4·H2O acts as a double-step reaction: an nth-order reaction (Fn) with n=4.28, E1=147.35 kJ/mol, A1=3.63×10^13 s^-1 is followed by a second-order reaction (F2) with E2=212.71 kJ/mol, A2= 1.82 × 10^18 s^-1.  相似文献   

12.
The interaction of gatifloxacin (HGA) with bovine serum albumin (BSA) at 15 and 37 ℃ has been investigated by fluorescence quenching spectroscopy in aqueous solution. The bimolecular quenching rate constant was determined by Stem-Volmer curves and the values were Kq=9.28× 10^12 L·mol^-1·s^-1 (15 ℃) and Kq=8.51 ×10^12 L·mol^-1·s^-1 (37 ~C). The results showed that the fluorescence quenching mechanism of BSA by HGA was a static quenching procedure. The thermodynamic parameters indicated that electrostatic forces played major role in the interaction of BSA with HGA. Studies on the relationship between the concentration of HGA and the fluorescence intensity of BSA showed that BSA and HGA bound at the molar ratio 1 : 1 and the equilibrium constant K0 was 6.80 ×10^4 L·mol^-1. The binding distances between BSA and HGA and the energy transfer efficiency were obtained based on the Ftrster's theory.  相似文献   

13.
The thermal behavior and kinetic parameters of the major exothermic decomposition reaction of the title compound in a temperature-programmed mode were studied by means of TG-DTG and DSC. The critical temperature of thermal explosion was calculated. The effect of the title compound on the combustion characteristic of composition modifier double base propellant containing RDX was explored with a strand burner. The results show that the kinetic model function in differential forms, the apparent activation energy(Ea) and the pre-exponential factor(A) of the major exothermic decomposition reaction are 3(1-α)[-ln(1-α)]2/3, 190.56 kJ/mol and 1013.39 s-1, respectively. The critical temperature of thermal explosion of the compound is 353.08 ℃. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as dα/dT=1014.65(1-α)[-ln(1-α)]2/3 e-2.2920×104/T. As an auxiliary catalyzer, the title compound can help the main catalyzer of lead salt of 4-hydroxy-3,5-dinitropyridine to accelerate the burning rate and reduce the pressure exponent of RDX-CMDB propellant.  相似文献   

14.
张建国  张同来  刘艳红 《中国化学》2005,23(10):1403-1406
[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diffraction analysis. The title complex has been studied by means of TG-DTG and DSC under conditions of linear temperature increase. The thermal decomposition residues were examined by FT IR analysis. Thermal decomposition mechanism of the title complex was proposed. In the temperature range of 30-680 ℃, the thermal decomposition process was composed of four major stages. The first stage was an endothermic process with the loss of four coordination water molecules. Since the dehydration product was unstable, when it was heated, it would be decomposed much more easily. The second stage was composed of an acute endothermic process and a continued strong exothermic process and the main decomposed residues were CuCO3, Cu(NCO)2 and polymers during this stage. The third stage was a sharp exothermic process, which resulted from the decomposition of the polymer. After the forth stage, the final decomposed residues were certainly copper oxide. The Arrhenius parameters have been also studied on the dehydration process and the first-step exothermic decomposition of [Cu(TO)2(H2O)4](PA)2 using Kissinger's method and Ozawa-Doyle's method. The results using both methods were consistent with each other. The Arrhenius equation can be expressed as in k=24.0-179.8 × 10^3/RT for the dehydration process and in k= 16.7-206.0 × 10^3/RT for the first-step exothermic decomposition, on the basis of the average of Ea and In A through the two methods.  相似文献   

15.
The thermal behavior and non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O (en=ethylenediamine) were studied with DSC and TG-DTG methods.The kinetic equation of the exothermal process is dα/dt=(10^17.92/β)4α^3/4exp(-1.688×10^5/RT).The self-accelerating decomposition temperature and critical temperature of the thermal explosion are 163.3 and 174.8 ℃,respectively.The specific heat capacity of [Cu(en)2H2O](FOX-7)2·H2O was determined with a micro-DSC method,with a molar heat capacity of 661.6 J·mol^-1·K^-1 at 25 ℃.Adiabatic time-to-explosion was also estimated as 23.2 s.[Cu(en)2H2O](FOX-7)2·H2O is less sensitive.  相似文献   

16.
邸友莹张剑  谭志诚 《中国化学》2007,25(10):1423-1429
A coordination compound of erbium perchlorate with L-α-glutamic acid, [Er2(Glu)2(H2O)6](ClO4)4·6H2O(s), was synthesized. By chemical analysis, elemental analysis, FTIR, TG/DTG, and comparison with relevant literatures, its chemical composition and structure were established. The mechanism of thermal decomposition of the complex was deduced on the basis of the TG/DTG analysis. Low-temperature heat capacities were measured by a precision automated adiabatic calorimeter from 78 to 318 K. An endothermic peak in the heat capacity curve was observed over the temperature region of 290-318 K, which was ascribed to a solid-to-solid phase transition. The temperature Ttrans, the enthalpy △transHm and the entropy △transSm of the phase transition for the compound were determined to be: (308.73±0.45) K, (10.49±0.05) kJ·mol^-1 and (33.9±0.2) J·K^-1·mol^-1. Polynomial equation of heat capacities as a function of the temperature in the region of 78-290 K was fitted by the least square method. Standard molar enthalpies of dissolution of the mixture [2ErCl3·6H2O(s)+2L-Glu(s)+6NaClO4·H2O(s)] and the mixture {[Er2(Glu)2(H2O)6](ClO4)4·6H2O(s)+6NaCl(s)} in 100 mL of 2 mol·dm^-3 HClO4 as calorimetric solvent, and {2HClO4(1)} in the solution A' at T=298.15 K were measured to be, △dHm,1=(31.552±0.026) kJ·mol^-1, △dHm,2 = (41.302±0.034) kJ·mol^-1, and △dHm,3 = ( 14.986 ± 0.064) kJ·mol^-1, respectively. In accordance with Hess law, the standard molar enthalpy of formation of the complex was determined as △fHm-=-(7551.0±2.4) kJ·mol^-1 by using an isoperibol solution-reaction calorimeter and designing a thermochemical cycle.  相似文献   

17.
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied.TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900°C,and the mass loss was in agreement with the theoretica1 value.XRD profile demonstrates that the product of the thermal decomposition at 500°C is LiCl.For the decomposition kinetics study,the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fitted models.The decomposition process was fitted by a two-step consecutive reaction:extended Prout-Tompkins equation[Bna,f (α) is (1?α)nα a] followed by a 1th order reaction(F1).The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol,respectively.The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005),respectively.The reaction types and activation energies were in agreement with those obtained from the isothermal method,but the exponentials were optimized for better fitting and prediction.  相似文献   

18.
A typical nitroimine bistriazole(DNABT) was synthesized with high yield(90.4%) by nitration reaction from DABT in HNO_3 and NH_4NO_3. Furthermore, a novel cocrystal(1) consisting of DNABT, H_2O and DMSO in a 1:2:2 molar ratio was analysized on the crystal structure. Cocrystal 1 crystallizes in the triclinic system, space group P1 with a = 6.3124(18), b = 8.233(2), c = 9.775(3) ?, β = 98.326(4)°, V = 481.59(74) ?~3, Z = 2, D_c = 1.55 g/cm~3, F(000) = 234, μ = 0.337 mm~(-1), S = 1.078, the final R = 0.0609 and w R = 0.2743. Additionally, the crystal structure is built up by four strong and seven weak hydrogen bonds. And the hydrogen bond network contributes to the stability of DNABT molecule. Typical TGA and DSC curves indicate the cocrystal 1 includes one endothermic and one exothermic decomposition processes, and the peak temperature at each process is 164.0 and 245.0 ℃. The nonisothermal decomposition kinetics analysis was performed by means of the Kissinger and Ozawa methods. The apparent activation energy(E_a) and pre-exponential factor(A) of the two decompositions are 96.0 kJ·mol~(-1), 108.1 s~(-1) and 215.8 kJ·mol~(-1), 1018.9 s~(-1), respectively.  相似文献   

19.
The thermal behaviors of the complexes of Cu(DMTZB)4X2 (DMTZB=3,3‘-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, X=NO3 or ClO4) and Cu(DMTZB)2 X2 (X=Br or Cl) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC, EDS and elemental analysis techniques. The resuits showed that their decomposition proceeded in three different ways mainly depending on the anions in the molecules. The heat effect associated with the decomposition step of DMTZB molecules was also different. The decomposition mechanisms and the kinetic parameters of DMTZB were determined and calculated by jointly using four methods, which showed that its pyrolysis was controlled by D3 mechanism but with different activation energies and pre-exponential factors for different complexes.  相似文献   

20.
汪敦佳  方正东  魏先红 《中国化学》2005,23(12):1600-1606
A new polyoxometalate (CPFX·HCl)3H4SiW12O40·10H2O was prepared from ciprofloxacin hydrochloride and H4SiW12O40·nH2O in aqueous solution, and characterized by elemental analysis, IR spectra and DTA-TG-DTG techniques. The IR spectrum confirmed the presence of Keggin structure and the characteristic functional group for ciprofloxacin in the compound. The TG-DTA-DTG curves showed that its thermal decomposition was a four-step process consisting of simultaneous collapse of Keggin type structure. The residue of decomposition was the mixture of WO3 and SiO2, confirmed by X-ray diffraction and IR spectroscopy. The decomposition mechanism and nonisothermal kinetic parameters of the polyoxometalate were obtained from an analysis to the TG-DTG curves by the single scanning methods (the Achar method and Coats-Redfern method) and the multiple scanning methods (the Kissinger method, Flynn-Wall-Ozawa method and Starink method). The results indicate that the kinetic equationswith parameters describing the thermal decomposition reaction are dα/dt=6.65×10^6[3(1-α)^2/3]e^-10495.5/T with E=87.26 kJ/mol and A=6.65×10^6 s^-1 for the second step,dα/dt=7.01×10^9(1-α)e^-18770.7/T with E=156.06 kJ/mol and A=7.01×10^9 s^-1 for the third step,dα/dt=9.77×10^43[(1-α)^2]e^-88980.0/T with E=739.78 kJ/mol and A=9.77×10^43 s^-1 for the fourth step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号