首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
针对土壤定量分析受基体效应影响大,LIBS定量分析精度不佳等问题,采用粒子群算法对LSSVM进行优化,提高模型的精确度。选取Pb Ⅰ 405.78 nm和Cr Ⅰ 425.44 nm作为分析谱线进行分析。采集十二个不同浓度样品的特征光谱,每个浓度样品在不同点采集20组数据,将其中17组数据设为训练集,3组数据设为预测集,用LSSVM和PSO-LSSVM两种方法建立定标模型。对比两种模型的拟合相关系数(R2)、训练集均方根误差(RMSEC)和预测集均方根误差(RMSEP)。由于自吸收效应的影响,随着浓度的增加,预测值逐渐低于实际值,LSSVM定标模型的拟合程度较低,无法达到实验要求,模型性能有待提高。利用粒子群算法对LSSVM的模型参数惩罚系数和核函数参数进行优化,得到最佳的参数组合,Pb元素为(8 096.8, 138.865 7),Cr元素为(4 908.6, 393.563 5),用最佳的参数组合构建LSSVM的定标模型。相比于LSSVM,PSO-LSSVM定标模型的精确度更高,Pb和Cr元素的R2提高到了0.982 8和0.985 0,拟合效果明显提升。Pb和Cr元素的训练集均方根误差由0.026 0 Wt%和0.027 2 Wt%下降到0.022 4 Wt%和0.019 1 Wt%,预测集均方根误差由0.101 8 Wt%和0.078 8 Wt% 下降到0.045 8 Wt%和0.042 0 Wt%,模型的稳定性进一步提高。说明PSO-LSSVM算法能够更好地降低土壤基体效应和自吸收效应带来的影响,提高分析结果的精确度与稳定性。  相似文献   

2.
激光诱导击穿光谱技术(LIBS)用于检测时,由于谱线多且复杂,存在许多冗余的信息,这些都会对定量分析造成影响。因此,提取有效的特征变量在LIBS的定量分析中具有非常重要的意义。对CaCl2溶液中的Ca元素进行光谱特征选择方法分析,对比单变量模型、偏最小二乘回归和CART回归树定标模型的准确度和稳定性。针对水体表面的波动性较大,光谱稳定性差,同时光谱受基体效应和自吸收效应影响等问题,首先采用单变量模型得到的拟合系数(R2)仅有0.933 2,训练均方根误差(RMSEC)、预测均方根误差(RMSEP)和平均相对误差(ARE)分别为0.019 2 Wt%,0.017 7 Wt%和11.604%。经偏最小二乘回归优化后,模型R2提高到0.975 3,RMSEC,RMSEP和ARE分别降低到0.010 8 Wt%,0.013 Wt%和7.49%。为了进一步提高定量分析的准确度,建立CART回归树定标模型。该方法在构建树模型时,通过平方误差最小化准则,从复杂的光谱信息中选取最优的特征变量组合做分类决策,从而建立Ca元素的定标曲线。通过CART回归树的变量选择,特征变量个数从100个减少到6个,变量的压缩率达到了94%,显著降低了无关谱线的干扰,回归树模型的相关系数R2,RMSEC,RMSEP和ARE分别为0.997 5,0.003 5 Wt%,0.006 1 Wt%和2.500%。相较于传统的单变量模型与偏最小二乘回归,CART回归树模型具有更高的精度、更小的误差。通过对特征变量的有效筛选,剔除无关信号的干扰,显著降低了基体效应和自吸收效应对LIBS定量分析的影响,提高了定量分析的准确度和稳定性。  相似文献   

3.
利用共线双脉冲激光诱导击穿光谱 (LIBS)对溶液中的乐果含量进行定量检测。采用圆柱形桐木木片对农药乐果进行富集,然后利用双通道高精度光谱仪获取样本在206.28~481.77 nm波段范围的LIBS光谱。选用4条磷元素谱线(P Ⅰ 213.618 nm,P Ⅰ 214.91 nm,P Ⅰ 253.56 nm,P Ⅰ 255.325 nm)为分析线,碳元素谱线(C Ⅰ 247.856 nm)为内标线,应用单变量线性拟合及最小二乘支持向量机(LSSVM)方法分别建立溶液中乐果含量的单变量定标模型、LSSVM定标模型及基于内标法的LSSVM定标模型,并进行比较。三个定标模型中,基于内标法的LSSVM定标模型性能最优,LSSVM定标模型性能次之,而单变量定标模型性能最差。结果表明,共线双脉冲LIBS技术结合LSSVM及内标法可以用于溶液中的乐果含量定量检测,所建立的定标模型的决定系数为0.999 7,训练集和验证集的平均相对误差分别为11.24%及12.01%。LSSVM方法及内标法均能在一定程度上改善定标模型的性能,提高预测精度。  相似文献   

4.
刘津  孙通  甘兰萍 《发光学报》2018,39(5):737-744
利用共线双脉冲激光诱导击穿光谱(LIBS)技术对溶液中的倍硫磷含量进行定量检测研究。采用石墨对倍硫磷溶液进行富集,利用双通道高精度光谱仪获取样品的LIBS光谱。以碳元素谱线(CⅠ247.856 nm)为内标对210~260 nm波段谱线进行校正,然后利用竞争性自适应重加权算法(CARS)筛选与倍硫磷相关的重要波长变量,最后应用最小二乘支持向量机(LSSVM)建立倍硫磷含量的定标模型,并与基本定标法及内标法建立的单变量定标模型进行比较。研究结果表明,共线双脉冲LIBS技术可以用于溶液中的倍硫磷含量检测。基本定标法建立的最优定标模型的拟合度R2为0.935 04,预测集样品的平均预测相对误差(PRE)为41.50%;内标法建立的最优单变量定标模型的拟合度R2为0.993 61,预测集样品的平均PRE为14.91%;内标-CARS-LSSVM定标模型的拟合度R2为0.998 6,预测集样品的平均PRE为8.06%。对比上述3类定标模型,内标-CARS-LSSVM定标模型性能最优,内标法建立的定标模型次之,而基本定标法建立的定标模型最差。由此可知,CARS方法可以有效筛选倍硫磷相关的重要变量,内标法结合CARS及LSSVM方法可以改善定标模型性能,提高预测精度。  相似文献   

5.
利用激光诱导击穿光谱(LIBS)技术对大豆油中的重金属Cr进行检测研究。以松木木片对重金属Cr进行富集,采用AvaSpec双通道高精度光谱仪在206.28~481.77 nm波段范围内采集松木木片样本的LIBS光谱,利用无信息变量消除(UVE)方法筛选与重金属Cr相关的波长变量,应用偏最小二乘(PLS)回归建立大豆油中重金属Cr的定标模型,并与单变量及全波段PLS定标模型进行比较。结果表明,相比单变量及全波段PLS定标模型,UVE-PLS定标模型的性能更优,其相关系数、校正均方根误差、交互验证均方根误差及预测均方根误差分别为0.990,0.045,0.050及0.054 mg·g-1。经UVE变量筛选后,UVE-PLS定标模型所用的波长变量数仅为全波段PLS的2%。由此可见,UVE是一种有效的波长变量筛选方法,能有效筛选出与重金属Cr相关的波长变量。  相似文献   

6.
溶液阴极辉光放电-原子发射光谱是一种新颖的快速、高效、实时在线的元素分析方法,它可用于水体金属元素的检测。为提高其测量精确度和稳定性,将内标法应用于溶液阴极辉光放电-原子发射光谱技术。对K元素建立了标准定标曲线和以Hβ为内标元素的定标曲线,内标法测得样品的相对误差和相对标准偏差分别为1.11%,2.14%,精确度和稳定性较之标准曲线法有一定的提高。实验考察了元素谱线强度在同一时段的波动情况,发现元素K和Hβ的谱线强度变化趋势稍有不同,而同主族元素K和Rb,Ca和Mg的谱线强度有相同的变化趋势,提出选择与待测元素同主族且谱线强度变化趋势较为一致的元素作为内标元素能更大化校正实验波动的观点。同时探讨了K以Rb为内标元素、Ca以Mg为内标元素以及Mg以Ca为内标元素时的内标法测量的精确度和稳定性,得其相对误差分别为0.49%,0.02%和0.30%,相对标准偏差分别为1.11%,1.13%和0.87%,与标准曲线法和以Hβ为内标元素的内标法相比效果更佳。测得自来水样品中Ca元素以Mg为内标的相对误差和相对标准偏差为0.58%,1.03%,Mg元素以Ca为内标的相对误差和相对标准偏差为1.57%和1.10%。研究结果表明,将溶液阴极辉光放电-原子发射光谱技术应用于水体金属元素检测时,内标法可以有效校正实验波动的影响,提高测量的精确度和稳定性。  相似文献   

7.
应用激光诱导击穿光谱(LIBS)对脐橙中Cu元素进行快速检测,并结合偏最小二乘法(PLS)进行定量分析,探索光谱数据预处理方法对模型检测精度的影响。针对实验室污染处理后的52个赣南脐橙样品的光谱数据,进行不同数据平滑、均值中心化和标准正态变量变换三种预处理方法。然后选择包含Cu特征谱线的319~338 nm波段进行PLS建模,对比分析了模型的主要评价指标回归系数(r)、交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)。采用13点平滑、均值中心化的PLS模型3个指标分别达到了0.992 8,3.43和3.4,模型的平均预测相对误差仅为5.55%,即采用该前处理方法模型的校准质量和预测效果都最好。选择合适的数据前处理方法能有效提高LIBS检测果蔬产品PLS定量模型的预测精度,为果蔬产品LIBS快速精准检测提供了新方法。  相似文献   

8.
利用激光诱导击穿光谱技术对CuSO4溶液中的Cu元素浓度进行实验测量。利用配置的七种浓度的CuSO4溶液,采用统计探索性数据分析方法给出了Cu元素定标曲线,其拟合度系数R2大于0.98,激光诱导击穿光谱的平均相对偏差值为6.9%,Cu元素的平均最小检测限为12ppm。利用去一交互检验方法采用分析谱线CuⅠ324.75nm和CuⅠ327.40nm对应的七种溶液的平均测量相对误差分别为6.52%和5.86%。当Cu元素浓度在10ppm时实验相对误差较大,其值为10.3%,而浓度达到2 000ppm时相对误差值减小,仅为1.1%,说明LIBS技术在溶液较低元素浓度检测方面的准确度有待提高。研究结果表明激光诱导击穿光谱技术在环境水污染重金属元素检测方面具有潜在的应用前景。  相似文献   

9.
在水体重金属激光诱导击穿光谱(LIBS)检测中,湖库水体组分的复杂性以及不同水域水质的差异加剧了基体效应对定量分析精密度和准确度的影响。为减小系统参数波动以及基体效应的影响,针对湖库水体不同采样点的水样,通过背景、内标元素校正待测元素的特征谱线,研究峰值强度、积分强度、信背比和内标校正强度组成的不同输入向量对支持向量机回归模型的影响,结果表明信背比和内标校正强度组成的二元输入向量回归效果最好,训练集均方根误差和相关系数分别为0.367和0.981,测试集的相对标准偏差和相对误差平均值分别为4.5%和12.1%。经过校正的多元输入向量,可以有效减小参数波动和基体差异的影响,为自然水体重金属LIBS定量分析提供数据输入方面的参考。  相似文献   

10.
采用激光诱导击穿光谱技术分析安徽怀远农亢农场土壤样品中微量元素Mn的含量分布情况。实验中选取403.1 nm作为Mn元素的分析线为,土壤中基体元素Fe作为内标元素,选取的分析线为407.2 nm。选取10个土壤样品分别用传统定标方法和内标法建立定标曲线,并对4个待测样品浓度进行预测。实验结果表明,传统定标方法建立的定标曲线的拟合相关系数r为0.954,检测限为93 mg·kg-1,待测样品的测量相对误差最大为5.72%;而采用内标法建立的定标曲线的拟合相关系数r为0.983,测量的相对误差减小到4.1%,检测限为71 mg·kg-1。说明采用LIBS技术对土壤中微量元素Mn检测的可行性,同时,内标法一定程度上可提高测量的精确性。  相似文献   

11.
采用近红外(NIR)光谱快检技术实现对咖啡蛋白质的定量检测,研究支持向量机(SVM)和极限学习机(ELM)等机器学习方法在建模分析中的实用性。结合潜变量分析技术,建立潜变量SVM(LV-SVM)模型和潜变量ELM(LV-ELM)模型,通过调试潜变量个数和机器学习关键参数的联合优选,实现数据降维和机器学习关键参数的同过程优化。运用定标-验证-测试机制,利用定标集样本建立咖啡蛋白质的NIR分析模型,随参数变动形成三维随动优选结构的建模预测结果,结合验证集样本对模型进行联合优选,然后将优化模型应用于测试集样本进行模型评价。LV-SVM建模优选的验证集预测均方根误差为6.797,对应的测试集预测均方根误差为8.384。LV-ELM建模优选的验证集预测均方根误差为6.118,对应的测试集预测均方根误差为7.837。与常规偏最小二乘(PLS)方法相比较,LV-SVM和LV-ELM方法均取得更好的预测结果,验证了潜变量机器学习方法在近红外定量分析中的应用优势,该方法有望应用于不同类型的咖啡各成分含量检测。  相似文献   

12.
为了提高近红外光谱技术快速测定小麦种子发芽率的准确度和稳健性,比较分析了基于全光谱的单一偏最小二乘(PLS)模型和多模型共识PLS模型(cPLS)性能,并提出了基于特征光谱的多模型共识PLS模型(Si-cPLS) 。实验收集84份小麦种子,通过SPXY法将样本集划分为训练集样本66个,预测集样本18个。从训练集中随机抽取50个样本作为校正集建立一系列PLS子模型,选取其中性能较好100个子模型作为成员模型建立cPLS模型,取成员模型预测结果的均值来分析未知样本。在此基础上,采用组合间隔偏最小二乘法(SiPLS)筛选特征谱区建立多模型共识PLS模型(Si-cPLS)。各模型均采用均值中心化预处理方法,PLS模型、cPLS模型以及Si-cPLS 模型对预测集的小麦种子发芽率进行50次重复预测的平均相关系数r分别为0.935,0.949和0.967,平均预测均方根误差RMSEP分别为13.735%,12.533%和10.273%,RMSEP 的标准偏差分别为1.144%,0.096%和0.08%。实验结果表明cPLS模型较单一PLS模型更加稳定可靠,而基于特征光谱的Si-cPLS模型则进一步提高了cPLS的稳定性与预测精度,为建立性能优秀的小麦种子发芽率近红外模型提供了新思路。  相似文献   

13.
针对多组分金属离子混合溶液的紫外-可见吸收光谱(UV-Vis)重叠严重、难以分离的问题,提出了一种基于稳定性和可信度偏最小二乘法(SCPLS)的特征波长选择方法。在SCPLS中,引入指数衰减函数(EDF)以迭代的方式对波长变量进行选择。在每次迭代中对蒙特卡罗采样所得到的数据集建模,计算各波长变量的稳定性和可信度指标,并通过EDF选择具有较高稳定性和可信度的变量,选择的变量作为新的变量集进入下一次变量选择迭代。迭代全部完成后,计算每一次迭代所选的变量集建模的交叉验证均方根误差(RMSECV),选择RMSECV最小的变量集作为波长变量选择的结果。利用Zn(Ⅱ), Cu(Ⅱ) 和Co(Ⅱ)混合溶液的紫外-可见光谱数据集和Zn(Ⅱ)和Co(Ⅱ)混合溶液的紫外-可见光谱数据集对所提方法性能进行了验证,并与全波段偏最小二乘、移动窗口偏最小二乘法(MWPLS)、蒙特卡罗无信息变量消除方法 (MC-UVE)、竞争性自适应加权算法 (CARS)和稳定性竞争自适应加权算法(SCARS)进行了比较分析。结果表明:该方法不仅能降低波长选择的复杂度,还能在保证波长选择过程稳定的情况下,选出对模型重要的波长变量,较之其他方法所提出的方法选取的变量建立的模型RMSECV最小,对于Zn(Ⅱ),Cu(Ⅱ) 和Co(Ⅱ)数据集,使用SCPLS方法得到的Zn(Ⅱ),Cu(Ⅱ)和Co(Ⅱ)的RMSECV值分别比全光谱PLS下降60.5%,40.2%和31.8%,与SCARS相比分别下降29.8%,26.1%和0.8%,Zn(Ⅱ),Cu(Ⅱ)和Co(Ⅱ)平均相对误差分别为2.14%,1.25%和0.74%,其中Zn(Ⅱ)的最大相对误差为4.67%,Cu(Ⅱ)的最大相对误差为3.99%,Co(Ⅱ)的最大相对误差为3.12%;对于Zn(Ⅱ)和Co(Ⅱ)数据集,使用SCPLS方法得到的Zn(Ⅱ)和Co(Ⅱ)的RMSECV值分别比全光谱PLS下降39.4%和24.9%,与SCARS相比分别下降35.3%和13.3%,Zn(Ⅱ)和Co(Ⅱ)平均相对误差分别为1.23%,1.10%,其中Zn(Ⅱ)的最大相对误差为4.45%,Co(Ⅱ)的最大相对误差为4.57%,有效提高光谱建模精度。  相似文献   

14.
LSSVM模型下的近红外光谱联合区间波长筛选方法   总被引:2,自引:0,他引:2  
针对传统近红外光谱波长选择方法忽略模型中非线性因素的缺陷,采用具有非线性处理能力的最小二乘支持向量机,结合间隔策略的波长选择方法和联合区间的思想,提出了一种非线性模型下的波长筛选算法—联合区间最小二乘支持向量机(synergy interval least squares support vector machines, siLSSVM)。以苹果糖度近红外光谱数据为例,与传统siPLS波长筛选方法相比,新算法的预测集均方根误差(RMSEP)在PLS模型和LSSVM模型预测时分别提高了37.43%和47.88%,预测集相关系数(RP)在PLS模型和LSSVM模型预测时分别增加了6.04%和7.31%。实例表明,对于存在非线性因素较强的光谱数据,siLSSVM算法能够有效的挑选最优波长区间与提高模型的预测精度和鲁棒性,为近红外光谱在非线性因素下筛选波长提供了新前景。  相似文献   

15.
基于遗传算法的安溪铁观音品质快速评价研究   总被引:2,自引:0,他引:2  
为探究一种快速无损的安溪铁观音品质评价方法,利用遗传算法(GA)对茶样的近红外光谱特征波长进行筛选,结合偏最小二乘(PLS),建立全谱段的PLS定量模型与GA-PLS模型。结果表明,傅里叶变换近红外(FT-NIR)全谱段光谱在经过平滑+二阶导数+归一化处理后,PLS模型预测性能最高,建模结果为:校正集相关系数RC=0.921,校正集均方根误差RMSEC=0.543,验证集相关系数RP=0.913,验证集均方根误差RMSEP=0.665。选用近红外光谱6 670~4 000 cm-1谱区,采用遗传算法进行特征波长筛选,参与建模数据点数从1 557缩减到408个。优选波段后,GA-PLS建模结果为:校正集相关系数RC=0.959,校正集均方根误差RMSEC=0.413,验证集相关系数RP=0.940,验证集均方根误差RMSEP=0.587。可见,GA-PLS模型的校正集和验证集的预测结果均优于全谱段PLS模型。结果说明,在传统的近红外光谱技术结合化学计量学方法的建模基础上,加入遗传算法进行波长筛选,能有效提高模型预测能力,实现方法学的创新研究,且GA-PLS品质评价模型具有较强的参考和推广价值,为提高我国茶叶品质的检测技术水平提供新的方法借鉴。  相似文献   

16.
利用傅里叶变换红外光谱(FTIR)和衰减全反射(ATR)结合偏最小二乘(PLS)回归,建立地中海贫血(地贫)筛查指标平均红细胞血红蛋白含量(MCH)、平均红细胞体积(MCV)和总血红蛋白(Hb)的同时定量分析方法。收集人外周血样品380个,根据地贫血液学指标筛查标准,地贫阳性180个、阴性200个。从全体样品中随机选取150个为检验集(阴性64,阳性86),余下230个为建模集(阴性136、阳性94);再将建模集随机划分为定标集(阴性68、阳性47,共计115)、预测集(阴性68、阳性47,共计115),共200次。实验比较的结果表明,中红外指纹区(1 600~900 cm-1)PLS模型的预测效果显著优于全扫描谱区(4 000~600 cm-1)PLS模型,并且模型复杂性明显降低。基于中红外指纹区PLS模型,MCH,MCV,Hb最优PLS因子个数分别为10, 10, 6;建模预测均方根误差(M_SEPAve)分别为2.19 pg,5.13 fL,8.0 g·L-1;建模预测相关系数(M_RP, Ave)分别为0.902,0.898,0.922;检验预测均方根误差(V_SEP)分别为2.22 pg,5.38 fL,7.7 g·L-1;检验预测相关系数(V_RP)分别为0.900,0.895,0.929;地贫筛查灵敏度、特异性分别达到100.0%和95.3%。结论:FTIR/ATR光谱结合PLS方法可以提供一种无需试剂、快速简便的大人群地贫筛查新技术。  相似文献   

17.
激光诱导击穿光谱(LIBS)技术结合支持向量机(SVM)定量分析土壤中Cr元素的含量。利用波长为1 064 nm的Nd∶YAG脉冲激光器作为激发光源,采用光栅光谱仪和CCD分光探测不同重金属元素含量土壤样品的LIBS特征光谱。为了提高土壤中Cr元素定量分析的精度,分别采用多元线性回归分析和SVM两种方法对土壤中Cr元素的含量进行定量分析。研究结果表明,采用多元线性回归分析方法可以有效提高定量分析的精度,定标曲线拟合相关系数从传统定量分析方法的0.689提高到0.980;SVM定量分析方法训练集得到的定标曲线斜率近似为1,拟合相关系数为0.998,优于传统定量分析方法和多元线性回归分析方法,对检验集的预测相对误差均在2.57%以内。LIBS技术结合多元线性回归和SVM定量分析方法可以有效的提高土壤中Cr元素定量分析的稳定性和精度,校正土壤基体效应对Cr元素定量分析的影响。  相似文献   

18.
瓦斯炭黑是橡胶中重要的添加剂之一,其含量对橡胶性能有重要的影响。丁腈橡胶是工业生产中应用比较广泛的合成橡胶,研究丁腈橡胶中瓦斯炭黑的含量具有重要意义。利用太赫兹时域光谱技术,对八种不同含量瓦斯炭黑与丁腈橡胶组成的混合物样本中的瓦斯炭黑含量进行测试,获取了混合物样本在0.3~1.4 THz频段的吸收光谱数据。分别利用偏最小二乘(PLS)和支持向量回归(SVR)建立混合物中瓦斯炭黑的定量分析模型,使用均匀梯度法来选择模型的校正集和预测集,获得瓦斯炭黑预测集的相关系数与均方根误差。偏最小二乘模型相关系数与均方根误差分别为0.985 8和2.098 9%,支持向量回归模型相关系数与均方根误差分别为0.998 0和0.785 4%。实验结果表明,支持向量回归定量分析模型的预测结果优于偏最小二乘模型。为进一步证明支持向量回归模型的稳定性,多次使用随机选择法选择它的校正集和预测集,并求得其相关系数与均方根误差。结果表明,无论是利用均匀梯度法还是随机选择法对支持向量回归定量分析模型的校正集和预测集进行选择,求得的相关系数和均方根误差均优于偏最小二乘模型。  相似文献   

19.
针对钢铁合金样品中存在基体效应复杂的问题,通过优化支持向量机模型的输入特征,建立多元素变量的定量分析模型,预测钢铁合金样品中Cr和Ni元素的含量。研究结果表明,分别以特征谱线的峰值强度和积分强度作为支持向量机模型的输入时,积分强度因为包含了谱线的谱宽和形状信息,模型训练效果较好;相比于单一元素谱线的特征信息,采用多元素的多条谱线信息输入支持向量机模型时,模型训练效果较好,这是由于多种谱线信息的输入可以有效校正基体效应的影响。在此基础上,通过归一化变量将内标法与多变量定标方法有效结合,不仅可以减小实验测量误差还能有效校正基体效应的影响,而且有效提高了模型的重复率和准确率。归一化变量作为支持向量机模型的输入变量,对待测样品S1和S2中Cr元素含量预测的相对误差为6.58%和1.12%,对Ni元素浓度预测的相对误差为13.4%和4.71%。通过归一化变量将内标法与多变量定标方法有效结合,可以充分发挥SVM算法的非线性学习优势,为LIBS技术应用于复杂样品定量定标分析提供理论基础。  相似文献   

20.
采用舌诊近红外反射光谱对人体血清总蛋白(TP)含量进行无创检测。采集58例舌尖反射光谱进行反射率归一化并记录相对应的血清总蛋白生化分析值,将样本分为训练集和预测集,运用主成分分析结合BP神经网络法和偏最小二乘算法分别建立预测模型。主成分分析结合BP神经网络模型对预测集进行预测,平均相对误差为7.35%,均方根误差为3.069 1 g·L-1,相关系数为0.902 1。偏最小二乘模型对预测集进行预测,平均相对误差为4.77%,均方根误差为0.130 1 g·L-1,相关系数为0.971 8。实验结果证实了舌诊近红外反射光谱可以较为准确地用于总蛋白含量的无创检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号