首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
用特征谱区筛选法结合太赫兹时域光谱(THz-TDS)技术对多元混合物成分含量进行了定量分析研究。实验利用太赫兹时域光谱系统测量了由乳糖一水合物(LAC)、对乙酰氨基酚(APAP)、可溶性淀粉(starch)以及微晶纤维素(MCC)四种材料组成的混合物样品的太赫兹吸收光谱,并分别尝试采用常规区间偏最小二乘(iPLS)、向后区间偏最小二乘(biPLS)、联合区间偏最小二乘(siPLS)和移动窗口偏最小二乘(mwPLS)四种特征谱区筛选法对多元混合物的太赫兹吸收光谱进行特征子区间优选,建立了太赫兹吸收谱与四元混合物中乳糖一水合物含量之间的定量回归模型。通过比较四种谱区筛选算法模型及全光谱偏最小二乘(PLS)模型所得结果,表明采用移动窗口偏最小二乘法建立的谱区筛选模型得到的结果相对最优,其交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)、校正集相关系数(RC)和预测集相关系数(RP)分别为0.980 3,1.114 1,0.996 0和0.995 1。实验结果表明,采用特征谱区筛选方法可以有效选择多元混合物太赫兹吸收光谱的特征区间,提高模型精度和降低模型复杂性,为实现多元混合物成分含量的快速检测提供了一种有效的方法。  相似文献   

2.
为了提高苹果可溶性固形物含量近红外光谱校正模型的预测能力和稳健性,分别采用反向区间偏最小二乘法、遗传算法和连续投影算法,筛选苹果可溶性固形物的近红外光谱变量,并建立了偏最小二乘回归模型。利用遗传算法筛选的141个变量建立的校正模型,预测效果最好,与全谱建立的校正模型比较,预测相关系数,从0.93提高到0.96,预测均方根误差,从0.30°Brix降低到0.23°Brix。实验结果表明遗传算法结合偏最小二乘回归方法,有效地提高了苹果可溶性固形物近红外光谱检测模型的预测精度。  相似文献   

3.
近红外光谱法快速检测猪肉中挥发性盐基氮的含量   总被引:15,自引:0,他引:15  
为了实现快速无损地检测猪肉新鲜度的目的,应用近红外光谱法测定猪肉新鲜度重要指标一挥发性盐基氮(TVB-N)的含量.猪肉原始光谱经标准偏差归一化方法(SNV)预处理后,用联合区间偏最小二乘法(siPLS)建立猪肉预处理后光谱和TVB-N含量的校正模型并与经典偏最小二乘法(PLS)模型、间隔偏最小二乘法(iPLS)模型作比较.试验结果表明,利用联合区间偏最小二乘法所建的预测模型最佳,其校正集相关系数(Rc)和交瓦验证均方根误差(fRv)分别为0.8332和3.75,预测集的相关系数(Rp)和预测均方根误差(fRP)分别为0.8238和4.17.研究结果表明利用近红外光谱和联合区间偏最小二乘法可以快速地测定猪肉中挥发性盐基氮的含量.  相似文献   

4.
SPA-LS-SVM检测土壤有机质和速效钾研究   总被引:1,自引:0,他引:1  
应用可见/短波近红外光谱分析测量土壤有机质和速效钾含量。光谱预处理包括平滑,标准归一化,多元散射校正和平滑结合一阶导数,以消除系统噪声和外部干扰,分别应用偏最小二乘和最小二乘支持向量机方法建立校正模型,模型的输入为基于连续投影算法得到的特征波长。比较显示基于连续投影算法得到的特征波长为输入的最小二乘支持向量机优于偏最小二乘法建模。模型评价指标由相关系数和预测均方误差表示。有机质的相关系数和预测均方误差分别0.860 2和2.98,速效钾为0.730 5和15.78。表明基于连续投影算法可见/短波近红外光谱利用最小二乘支持向量机建模,可以作为一个精确的土壤有机质和速效钾的测定方法。  相似文献   

5.
应用近红外高光谱成像技术预测甘蔗可溶性固形物含量   总被引:5,自引:0,他引:5  
为了探究应用近红外高光谱成像技术对甘蔗内部可溶性固形物(SSC)预测的可行性,试验样本选择三种不同品种中的240个甘蔗节作为研究对象。通过高光谱成像系统获取甘蔗节的近红外光谱信息和图像信息,并分别探讨了光谱信息和图像纹理信息对甘蔗可溶性固形物预测的可行性。采用最小二乘回归(PLSR),最小二乘支持向量机(LS-SVM)及主成分回归(PCR)建模方法构建甘蔗可溶性固形物的预测模型。比较了连续投影算法(SPA)、无信息变量消除算法(UVE)及区间偏最小二乘(iPLS)特征提取方法对预测结果的影响。实验结果表明:基于甘蔗的光谱信息能实现可溶性固形物的预测,其中偏最小二乘回归模型的建模集和预测集的相关系数分别为0.879和0.843,均方根误差分别为0.644和0.742。通过UVE算法提取105个有效波长所建立的PLSR模型的建模集及预测集相关系数分别为0.860和0.813,均方根误差分别为0.693和0.810。  相似文献   

6.
基于最小二乘支持向量机的国公酒中橙皮苷含量测定   总被引:1,自引:0,他引:1  
应用近红外光谱技术结合最小二乘支持向量机建立了国公酒中橙皮苷含量的模型。利用Kernard-Stone法对训练集样本进行划分,对光谱数据预处理方法进行了选择,比较了平滑、范围标度化、自标度化、一阶微分、二阶微分以及这几种预处理相互结合的六种方法,确定了以平滑、一阶微分,范围标度化作为国公酒近红外光谱的数据预处理方法,采用组合的间隔偏最小二乘法筛选出有效波段8 211~8 312 cm-1及9 712~9 808 cm-1。应用最小二乘支持向量机建立模型,所建模型的交叉验证误差均方根为0.000 1,预测误差均方根为0.004,预测集的相对偏差小于5%。与组合的间隔偏最小二乘法、径向基-人工神经网络和支持向量机进行了比较。该方法快速、无损且可靠,可作为国公酒中橙皮苷含量快速测定的手段。  相似文献   

7.
乙醇柴油是柴油替代品的一种,它的使用越来越广泛,乙醇柴油品质由许多指标决定,采用传统方法检测这些指标不仅价格昂贵而且耗时长。近红外光谱技术是一种廉价、快速实时在线检测乙醇柴油品质的有效方法。本文采用近红外光谱技术结合最小二乘支持向量机检测了乙醇柴油的密度、粘度和乙醇含量,比较了线性和非线性校正技术(主成分回归、偏最小二乘回归和最小二乘支持向量机)对乙醇柴油品质的分析效果,同时也比较了不同预处理方法对预测模型能力的影响。实验结果表明,最小二乘支持向量机优于主成分回归和偏最小二乘回归模型,其对乙醇柴油密度、粘度、乙醇含量建模效果最优,相关系数分别是0.995 8、0.995 7和0.995 3;预测均方根误差分别为0.000 68、0.011 3和0.5714。  相似文献   

8.
氨基酸与儿茶素是茶叶品质的重要组成成分。祁门红茶在加工过程中,氨基酸与儿茶素含量发生了显著的变化,而且不同加工阶段差异性很大,但目前在生产中缺乏快速在线检测方法。为了实现对祁门红茶加工过程中氨基酸和儿茶素含量快速测定,试验以鲜叶、萎凋叶、揉捻叶、发酵叶和干燥后毛茶为原料,获取近红外光谱并利用化学方法检测氨基酸和儿茶素含量。对采集的原始光谱进行标准正态变量变换(SNVT)预处理,利用联合区间偏最小二乘回归法(Si-PLS)构建氨基酸和儿茶素含量近红外回归模型,相关系数与交互验证均方根误差作为评价模型的有效指标。结果表明,利用Si-PLS方法建立氨基酸含量的模型最优组合包含20个光谱区间并联合4个子区间和9个主成分因子,校正集的相关系数、校正均方根误差分别为0.955 8和1.768;预测集的相关系数、预测均方根误差分别为0.949 5和2.16。儿茶素含量的模型最优组合包含20个光谱区间并联合3个子区间和10个主成分因子,校正集的相关系数、校正均方根误差分别为0.940 1和1.22;预测集的相关系数、预测均方根误差分别为0.938 5和1.17。所建立模型准确性较好,这为茶叶加工过程中茶叶品质的在线监控提供了理论依据。  相似文献   

9.
厚皮类瓜果内部品质的无损检测是目前水果产业的检测技术瓶颈。本文采用高光谱漫透射技术对脐橙可溶性固形物(SSC)含量进行可视化分析研究。通过基线校正(Baseline)预处理结合连续投影算法(SPA)优选9个特征波长,建立SSC偏最小二乘回归(PLSR)模型,校正集相关系数r_(cal)为0.891,校正集均方根误差RSMEC为0.612°Brix,预测集相关系数r_(pre)为0.889,预测集均方根误差RMSEP为0.630°Brix。最后,计算各个像素点的SSC值结合图像处理技术得出SSC的可视化分布图,直观判断脐橙SSC含量高低。  相似文献   

10.
以新疆艾比湖湿地保护区采集的300个荒漠土壤样品为研究对象,利用ASD Field Spec○R 3 HR光谱仪获取的土壤可见-近红外光谱数据以及化学分析获取的土壤全磷数据为数据源,将原始光谱数据经过卷积平滑、标准正态变量变换以及一阶微分预处理后,采用蚁群-遗传结合区间偏最小二乘法提取荒漠土壤全磷含量特征波长,构建土壤全磷含量偏最小二乘回归预测模型;并与全谱偏最小二乘、蚁群-区间偏最小二乘、遗传-偏最小二乘模型进行比较。结果表明:经蚁群-区间偏最小二乘法筛选后,荒漠土壤全磷特征波段为500~700,1 101~1 300,1 501~1 700,1 901~2 100 nm;进一步采用遗传-区间偏最小二乘法进行变量选择,得到共线性最小的13个有效波长,分别为:1 621,546,1 259,573,1 572,1 527,564,1 186,1 988,1 541,2 024,1 118和1 191 nm。建模方法比较显示,采用蚁群-遗传结合区间偏最小二乘法选择的特征变量,建立的模型精度最高,其次是遗传算法、蚁群算法和全光谱。蚁群-遗传结合区间偏最小二乘法建立的土壤全磷含量的模型,效验证均方根误差RMSECV以及预测集均方根误差RMSEP分别为0.122和0.108 mg·g-1,效验证相关系数Rc以及预测集的相关系数Rp分别为0.535 7,0.555 9。因此,经过卷积平滑、标准正态变量变换以及一阶微分预处理,并利用蚁群-遗传结合区间偏最小二乘法建立的模型不仅简单,而且具有较高的预测精度和较好的稳健性,可以估算荒漠土壤全磷含量。  相似文献   

11.
甲醇汽油是一种清洁能源,甲醇汽油中甲醇的含量决定了汽油的性能。通过中红外光谱对甲醇汽油中甲醇含量进行定量检测和分析。首先,对采集的甲醇汽油原始中红外光谱进行平滑处理(smoothing)、多元散射校正(MSC)、基线校正(baseline)、归一化(normalization)等预处理,再建立PLS模型,对比选择最佳预处理方法,结果表明:在多元散射校正(MSC)处理后建立的PLS模型效果最好,模型的预测集相关系数r为0.918,预测均方根误差RMSEP为2.107。为进一步简化模型,提高预测精度,采用无信息变量消除(uninformative variable elimination, UVE)方法对波长进行筛选,将UVE波段筛选之后的作为模型的输入变量,采用偏最小二乘法(partial least squares, PLS)、主成分回归(principal components regression, PCR)和最小二乘支持向量机(least square support vector machine, LSSVM)三种方法分别建立甲醇汽油中甲醇含量的定量预测模型,并比较不同模型的预测效果和结果。结果表明,使用无信息变量消除可以较好提高数据的运算速度,其中,UVE-PLS模型建模效果最好,r和RMSEP分别为0.923和2.075。该实验表明中红外光谱检测甲醇汽油中甲醇含量是可行的并可以得到较好的效果;UVE是一种对甲醇汽油的中红外光谱非常有效的波段筛选方法,该模型的建立对石油化工领域具有较为重要的意义。  相似文献   

12.
柑橘叶片叶绿素含量的准确检测对柑橘营养状况和生长态势具有极其重要的意义。研究了快速无损诊断柑橘叶片中叶绿素含量的方法,以期为拉曼光谱检测技术用于柑橘叶片叶绿素含量检测提供参考。采集不同冠层高度和不同地理分布的柑橘叶片120片,拭去叶片表面的灰尘,用去离子水对其清洗、晾干装入密封袋中并用标签分类标注。然后对柑橘叶片进行拉曼光谱采集,参数设置如下:分辨率为3 cm-1,积分时间为15 s;激光功率为50 mW。分别采用BaselineWavelet、迭代限制最小二乘(IRLS)和不对称最小二乘(ALS)三种算法对柑橘叶片的拉曼光谱背景进行扣除,使用偏最小二乘(PLS)方法建立定量模型;四种光谱预处理方法归一化(Normalization),Savitzky-Golay卷积平滑(SG smoothing, SG平滑)、多元散射校正(MSC)和Savitzky-Golay一阶导数(SG 1st Der)对扣除背景后的光谱进行进一步的优化处理。结果表明:采用原始光谱、BaselineWavelet、IRLS、ALS背景扣除处理后的光谱建立PLS模型,模型的相关系数r分别为0.858,0.828,0.885和0.862,交互验证均方根误差(RMSECV)分别为5.392,5.870,4.934和5.336,最佳因子数分别为8,3,8和8;IRLS背景扣除处理后的PLS模型的RMSECV最小,相关系数最高,建模效果最好。分别采用SG平滑、归一化、MSC和SG 1st Der预处理方法对IRLS背景扣除后光谱进行预处理并建立PLS模型,结果表明:IRLS光谱及其结合SG平滑、归一化、MSC和SG 1st Der四种预处理方法的PLS模型的R分别为0.885,0.897,0.852,0.863和0.888,RMSECV分别为4.934,4.715,5.595,5.182和4.962;最佳因子数分别为8,8,8,8和5;IRLS-SG平滑后PLS模型的RMSECV最小,模型效果最优。对IRLS-SG平滑预处理后的PLS模型展开验证,预测相关系数r为0.844,预测均方根误差(RMSEP)为5.29,预测精确度较高。采用拉曼光谱结合三种光谱背景扣除方法和四种预处理方法对柑橘叶片叶绿素含量进行定量分析表明:采用IRLS背景扣除结合SG平滑预处理后的PLS模型最优,建模集r为0.897,RMSECV为4.715;预测集r为0.844,RMSEP为5.29,预测精度较高。拉曼光谱结合背景扣除方法可以为柑橘叶片叶绿素含量的定量分析提供一种快速简便的分析方法。  相似文献   

13.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

14.
结球甘蓝是一种富含碳水化合物的常见蔬菜,可溶性糖含量是决定其品质的重要参数。可溶性糖易溶于水,是蔬菜和水果口味的有效调节剂。作为碳水化合物,可溶性糖由三种元素C,H和O组成,其分子吸收光谱主要由被检测材料的分子中C-H,O-H和CO等基团的组合频率吸收和倍频吸收组成,包含丰富的有机物信息。因此,采用近红外光谱和化学计量学方法,探索结球甘蓝可溶性糖含量的快速检测方法。用德国布鲁克公司的MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集161份结球甘蓝样本光谱数据。波数范围:12 800~4 000 cm-1(780~2 500 nm)。蒽酮比色法测量样本的可溶性糖。综合应用马氏距离法(MD)和蒙特卡洛交叉验证法(MCCV)剔除异常样本,采用Kennard-Stone(K-S)法将样本按照给定比例划分为校正集和验证集。分别使用Savitzky-Golay卷积平滑(S-G),一阶导数(FD),二阶导数(SD),多元散射校正(MSC)和变量标准化(SNV)及它们的组合共12种方法对样本进行光谱预处理,获得最佳预处理方法,提高光谱数据的信噪比。采用竞争性自适应重加权采样法(CARS)筛选偏最小二乘回归(PLS)模型中回归系数绝对值大的波数点,去掉回归系数绝对值小的波数点,以有效选择与所测特性值相关的最优波数组合,获得具有良好鲁棒性和强预测能力的校正模型。使用模型决定系数R2、交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)作为模型精度评价指标。根据蒙特卡洛交叉验证法和马氏距离剔除异常样本的原理,共剔除10个光谱或者化学值异常的样本。最终参与建模分析的样本个数为151。异常样本剔除后,通过K-S法将样本按照3∶1被分成校正集(110个样本)和验证集(41个样本)。使用原始光谱数据,预处理后的光谱数据和对应于优选波数的光谱数据,建立PLS模型。结果表明,利用MSC+FD光谱预处理可以提高建模精度,校正集R2从处理前的0.68增长到0.93,MSC+FD是本研究中理想的光谱数据预处理方法。利用CARS法共优选了84个建模波数。在12 000~10 000 cm-1波数区域内,有O-H键2级和C-H键3级倍频伸缩振动吸收,此区域主要的背景信息为水和其他含氢基团,在此区域内共包含了36个选定的波数。在8 500~6 000 cm-1区域,存在糖类和水的O-H键的1级倍频伸缩振动吸收,葡萄糖的O-H键的1级倍频伸缩振动吸收,该区域是包含反映可溶性糖成分的主要光谱区间,背景影响较小,CARS方法在此区域共选择了15个建模波数。5 800~4 000 cm-1区域与12 000~10 000 cm-1区域相似,包含的选定波数多,CARS方法在此区域选择了33个建模波数。利用CARS对参与建模的波数进行优选,减少了无关信息,降低了模型的复杂度,选择的波数不但引入了表征待测组分的光谱,同时还引入了代表背景信息的光谱,使得校正模型适应性增强。建立了结球甘蓝可溶性糖的全谱PLS模型,根据CARS波数优选结果,建立了结球甘蓝可溶性糖的CARS-PLS模型。对于全谱PLS定量模型,校正集的决定系数R2为0.93,RMSECV为0.157 2%,RMSEP为0.132 8%。对于CARS-PLS模型,校正集的决定系数R2为0.96,RMSECV为0.076 8%,RMSEP为0.059 4%。数据表明,两种模型具有相当的R2,但CARS-PLS模型的RMSECV是全谱PLS模型的1/2。RMSEP也接近1/2,CARS-PLS模型比全谱PLS定量模型所用建模变量少,模型得到简化,精度更优。用CARS-PLS模型对验证集41个样本进行预测,预测集决定系数R2为0.86,预测标准误差为0.059 4%。提供了一种工作效率较高的结球甘蓝质量无损检测方法。  相似文献   

15.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

16.
饲料是畜牧生产的物质基础,饲草原料和饲料产品营养价值的检测与评估是饲料生产中的重要环节,面对饲草资源中粗蛋白含量低和大量依靠进口饲料的局面,大豆作为优质的高蛋白豆科饲草是畜牧业生产利用的重要资源。不同青饲大豆及其不同刈割期的饲用品质参数可以评价青饲大豆的饲用性能,但目前主要以化学方法进行检测,过程繁琐,试验周期长、易造成人为操作误差,且青饲大豆主要饲用品质指标的光谱快速检测尚属空白,亟待开发和利用。鉴于近红外光谱快速分析技术在检测领域及饲料分析中的广泛应用,利用近红外光谱分析技术在950~1 650 nm范围内收集不同大豆品种不同刈割时期的全株样品光谱,对样品的主要饲用品质参数粗蛋白(CP)含量、中性洗涤纤维(NDF)含量和酸性洗涤纤维(ADF)含量三个指标按国家标准或行业标准的化学方法进行检测,得到的150份样品的品质数据按3∶2分为校准集和验证集。通过一阶求导(NW1st)、二阶求导(NW2nd)、标准正态变量变换方法(SNV)、去趋势算法(DE-trending)4种不同光谱预处理方法中的一种或多种处理的组合,结合偏最小二乘(PLS)回归算法建立了青饲大豆三个主要品质参数CP,NDF和ADF含量的预测模型。通过比较回归模型中的校准集和验证集中决定系数(R2)和均方根误差(RMSE)得出,NW1st+DE-trending+SNV+PLS处理后所建立的模型效果最好,青饲大豆CP含量模型中的校准集的R2C和验证集的R2P分别为0.96和0.95,NDF含量模型中的R2CR2P分别为0.90和0.89,ADF含量模型中的R2CR2P分别为0.94和0.93。通过验证集对预测模型的检验分析进一步证实了该模型的准确性和稳定性,形成了一种便于青饲大豆品质检测的近红外光谱(NIRS)快速分析法。随着青饲大豆品质参数数据量的增加,将不断完善青饲大豆品质检测模型,该方法不但扩大了近红外光谱仪对饲草资源品质的检测类别与范围,而且准确高效,有利于高蛋白优质饲草资源的开发和有效利用。  相似文献   

17.
准确及时的检测原油含水率对注水策略调整、原油开采能力评估、油井开发寿命预测等均具有重要意义。然而,当前我国大多数油田均已进入高含水的开发中晚期,含水率测量难度大且准确率不高。在此背景下,开展了高含水情况下利用近红外光谱进行原油含水率测量的研究。 首先介绍了目前原油含水率检测的常用方法,分析了它们的优劣。理论上,由于水的近红外光吸收带与原油中C-H键的吸收带有明显区别,根据Lambert-Beer吸收定律和吸光度线性叠加定律可知,不同含水率高含水原油近红外光谱会存在较强响应差异。为此,对高含水原油进行近红外光谱检测,建立原油含水率与近红外光谱响应间的非线性映射模型,可实现高含水原油含水率的精确测量。为了验证该方法的有效性,搭建了近红外光谱数据采集实验装置:采用白炽灯作为光源,经过光路调节成平行光后垂直射入样品池,用近红外光谱仪(海洋光学NIR512)采集光谱用于分析。其中,接收光谱仪带宽为900~1 700 nm,平均分成512个波段。光谱数据利用光谱仪配套软件储存在电脑中。样本采用相同厚度不同比例的油水混合物,样本含水率范围为70%~99%,共采集数据60组,每组重复3次取平均值。得到原始数据后,先进行原始数据预处理,以减少数据采集时来自高频随机噪音及温度不稳定、样本不均匀、基线漂移、光散射等不利因素的影响。分别选用了S-G滤波、一阶导数和S-G滤波+一阶导数作为数据预处理的方法,利用连续投影算法(SPA)对光谱数据进行降维,并利用偏最小二乘法(PLS)和多元线性回归(MLR)进行建模,模型精度通过计算均方根误差值(RMSE)和相关系数(r)来验证。对比发现,使用S-G滤波+一阶导数建立的模型RMSE值最小(RMSE=0.007 0,r=0.998 3)。使用SPA降维后的模型要优于全波段PLS模型(RMSE=0.083 3,r=0.920 6)与MLR模型(RMSE=0.099 9,r=0.967 1)。利用SPA提取出的31个特征波长建立的模型仅占全波段的6.05%,并获得了较好的精度。证明了利用光谱检测高含水原油含水率可行性,并且得到了满意的精度,为高含水原油的含水率检测提供了新的方法, 为进一步利用近红外光进行高含水原油的快速检测与在线监测提供参考。  相似文献   

18.
水体中的硝酸盐浓度过高不仅会造成水环境污染而且会对人类身体健康造成很大威胁,传统的检测硝酸盐的方法检测时间长且操作复杂。针对水体中硝酸盐氮难以快速在线检测的问题,基于紫外吸收光谱,提出了一种混合预测模型结合光谱积分快速定量检测水体中硝酸盐浓度的方法。混合预测模型为低浓度样本建立的双波长法预测模型与高浓度样本建立的偏最小二乘支持向量机(LS-SVM)预测模型数据融合之后的模型。按照合适的浓度梯度配备了19组硝酸盐氮标准溶液,通过实验测得不同浓度硝酸盐氮样本的光谱数据。首先基于双波长法对所有样本进行回归分析,按照A=A220-2A275计算不同实验样本的吸光度A,其中A220A275是220和275 nm处样本的吸光度,将吸光度A与样本浓度值进行线性回归,拟合出样本浓度的预测值。结果显示当样本浓度较小时,相关性很好,r为0.997 4,随着实验样本浓度的上升,曲线发生严重的非线性漂移,因此双波长法只适合低浓度样本预测模型的建立。对于高浓度样本,光谱重叠严重,适合建立非线性的预测模型,支持向量机(SVM)与LS-SVM都适合小样本的非线性数据建模,LS-SVM预测精度稍高,运算速度稍快。通过对所有的实验样本进行全波长光谱积分,比较相邻样本光谱积分的变化率可以筛选出样本的临界浓度值,4 mg·L-1的硝酸盐样本积分值前后变化率最大,因此选择4 mg·L-1作为临界浓度值较为合适。浓度高于4 mg·L-1的实验样本建立LS-SVM预测模型,通过交叉验证的方法选择出合适的参数,正则化参数γ=50,核函数选择高斯核,核函数宽度σ2=0.36,训练样本之后进行回归;其余样本建立双波长法预测模型,最后进行两种模型的数据融合,形成从低浓度到高浓度的水体中硝酸盐浓度的检测。为了验证混合预测模型的预测精度,另外建立了SVM,LS-SVM,偏最小二乘(PLS)等模型,并求出r,预测值与真实浓度值平均绝对误差(MAE)和均方根误差(RMSE)对模型进行评价。验证结果表明,相比于SVM,LS-SVM和PLS等模型,提出的混合模型回归的相关系数为0.999 86,分别提高了1.8%,1.6%和0.45%,预测值与真实浓度的平均绝对误差为2.55%,分别降低了6.27%,4.49%和1.01%,均方根误差为0.303,为四种预测模型中最小,SVM与LS-SVM的相对误差相对较高,PLS模型相对误差上下波动比较大,混合预测模型相对误差最为稳定,并保持在较低水平,由此可见混合预测模型的预测效果明显优于其他几种模型。并与文献[5-7]中的测量方法进行对比,该混合预测方法可以简单快速的测量水体中硝酸盐氮的浓度,且不需要试剂,无二次污染,与文献[9]中的预测模型相比,预测精度明显提高。因此提出的混合模型可正确快速地预测水体中硝酸盐氮的浓度,可为在线监测水体中硝酸盐浓度提供有效的技术参考。  相似文献   

19.
基于LS-SVM紫外可见光谱检测水产养殖水体COD研究   总被引:1,自引:0,他引:1  
采用紫外可见(ultraviolet/visible,UV/Vis)光谱技术对水体中有机物浓度的指标化学需氧量(chemical oxygen demand,COD)进行快速检测,将收集到的135份水样进行UV/VIS波段全光谱扫描,应用Savitzky-Golay (SG)平滑算法,经验模态分解算法(empirical modedecomposition,EMD)和小波分析(wavelet transform,WT)对提取出的光谱数据进行去除噪声处理,为了简化模型,PLSR建模得到的6个潜在变量(LVs)作为偏最小二乘支持向量机(LS-SVM)的输入建立COD预测模型,LS-SVM模型的预测集决定系数r2为0.82,预测均方根误差RMSEP为14.82 mg·L-1。说明使用LVs作为LS-SVM建模输入,可以准确快速检测水产养殖水体中的COD含量,为将来实现水产养殖水质COD含量的在线检测以及其他水质参数的快速测定奠定了基础。  相似文献   

20.
甲醇汽油是一种用以替代传统汽油的新型燃料,其品质受到甲醇含量的严重影响。因此,甲醇汽油中甲醇含量的快速分析对其品质把控具有深远意义。基于拉曼光谱(Raman)结合偏最小二乘(PLS)建立了一种甲醇汽油中甲醇含量快速定量分析方法。采用激光拉曼光谱仪对49组甲醇汽油样品的Raman光谱进行采集,并进行光谱解析。比较了五种光谱预处理方法对甲醇汽油原始Raman光谱的预处理效果,并采用变量重要性投影(VIP)对小波变换(WT)预处理后的甲醇汽油Raman光谱数据进行了特征变量提取。其次,采用五折交叉验证(5-flod cross-validation (CV))对PLS校正模型的潜变量数目(LVs)及VIP阈值进行优化。在最优输入变量和模型参数下,分别构建了基于不同输入变量的PLS模型。研究表明,相较于原始光谱-偏最小二乘模型(RAW-PLS)和小波变换-偏最小二乘模型(WT-PLS),变量重要性投影-偏最小二乘模型(VIP-PLS)可以获得更好的分析性能,其预测集决定系数(R2p)为0.960 4,均方根误差(RMSEP)为0.0341。因此,Raman光谱结合PLS是一种快速准确的甲醇汽油中甲醇含量分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号