首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CoPc/Al2O3催化分子氧环氧化环己烯的研究   总被引:1,自引:0,他引:1  
常使用均相催化剂[1-4]催化氧化剂对烯烃进行环氧化来制备环氧环己烷,但均相催化剂存在分离回收难,易二聚失活的缺点.近年来对均相催化剂的固载开展了广泛的研究,如郑岩等[5]使用溶胶 -凝胶包容乙酰丙酮镍,M.Salavati-Niasari等[6]用Al2O3固载Mn(Salen)、Mn(en)2和Mn(acac)2金属配合物用于烯烃环氧化,由于Al2O3廉价易得,酞菁具有不易二聚、降解等较稳定的优点[3],本文以酸性Al2O3为载体,固载酞菁钴金属配合物制备CoPc/Al2O3新型环氧化催化剂,并对其结构进行表征,同时以分子氧为氧源,异丁醛为还原剂考察CoPc/Al2O3催化剂对环己烯的催化环氧化活性,探索了环己烯环氧化的较佳工艺参数.  相似文献   

2.
Salen Mn(Ⅲ)配合物是目前己知的高活性烯烃环氧化用催化剂[1,2],虽然在均相条件下选择性好、转化率高、反应条件温和,但难于从反应体系中分离回收和重复使用而大大限制了它的应用;且随着时间的推移,典型配合物的二聚形成含氧或超氧配合物从而导致催化活性下降.因此选择合适的方法将活性组分固载到有机或无机载体上,是均相催化剂多相化的一种重要方法[3].  相似文献   

3.
近年来,含有过渡金属配合物和多金属氧酸盐的三维超分子化合物的合成与性能研究受到广泛关注.利用过渡金属配合物优良的可裁剪性和修饰性,可以对多金属氧酸盐化合物的结构和性质进行有效调控,进而构造出具有独特空间结构和性质的新型功能材料.这类材料往往具有多金属氧酸盐与过渡金属配合物两者结合的优点,在医学、光学、磁性材料、气体吸附材料及催化等领域显示出重要的学术研究价值和潜在的应用前景.然而,相比于在化合物合成及结构研究领域中的快速发展,过渡金属配合物修饰的多金属氧酸盐基化合物在催化领域中应用较少.本文采用水热合成法,以4,4′-联吡啶(bipy)或1,4′-双咪唑-1-甲基苯(bix)为氮杂环配体,合成了两个铜配合物修饰的钼氧簇超分子化合物催化剂,分别记为[Cu(bipy)]4[Mo15O47]·2H2O (1)和[Cu(bix)][(Cubix)(δ-Mo8O26)0.5](2).催化剂1中包含一个由铜的4,4′-联吡啶有机链修饰的钼氧簇链,催化剂2是由1,4′-双咪唑-1-甲基苯有机配体、铜离子和八钼酸盐构筑的具有自穿插结构的超分子化合物.通过以叔丁基过氧化氢为氧化剂的烯烃环氧化催化反应,考察了两种催化剂的催化性能.结果表明,催化剂1和2对环辛烯或1-辛烯环氧化反应表现出较高的催化活性,性能均明显优于未引入铜配合物的超分子化合物(H2bix)[(Hbix)2(γ-Mo8O26)]2·H2O (3);在相同反应条件下,催化剂1表现出更高的催化活性;溶剂种类显著影响催化剂的催化性能,以乙腈为溶剂时,苯乙烯环氧化反应主产物为苯甲醛(仅有很少量的环氧化合物),而以氯仿为溶剂时,环氧化合物选择性显著提高;中断实验和循环测试结果表明,催化剂1和2在1-辛烯环氧化反应中均表现出良好的稳定性和循环使用性. FT-IR和XRD表征结果证实,经多次循环使用后催化剂结构基本保持不变,表明催化剂具有良好的结构稳定性. XPS表征结果表明,催化剂1中钼的正电性高于催化剂2,这是由于配体类型不同及钼氧簇结构不同所致.拥有较高正电性的钼物种通常会表现出更高的催化烯烃环氧化反应能力,这可能是催化剂1的催化活性优于催化剂2的主要原因.此外,通过结构分析可以看出,催化剂1具有更开放的框架结构,这更有利于反应物扩散,继而使催化剂表现出更高的催化活性.需要指出的是,催化剂1和2中存在的铜配合物也可能直接作为新的活性中心参与对氧化剂的活化,继而对催化剂性能(活性和选择性)产生影响;此外,铜配合物与钼氧簇之间较强的相互作用使所形成的超分子化合物具有良好的结构稳定性,继而使这类超分子化合物催化剂表现出较为优异的稳定性和循环使用性.  相似文献   

4.
近年来,含有过渡金属配合物和多金属氧酸盐的三维超分子化合物的合成与性能研究受到广泛关注.利用过渡金属配合物优良的可裁剪性和修饰性,可以对多金属氧酸盐化合物的结构和性质进行有效调控,进而构造出具有独特空间结构和性质的新型功能材料.这类材料往往具有多金属氧酸盐与过渡金属配合物两者结合的优点,在医学、光学、磁性材料、气体吸附材料及催化等领域显示出重要的学术研究价值和潜在的应用前景.然而,相比于在化合物合成及结构研究领域中的快速发展,过渡金属配合物修饰的多金属氧酸盐基化合物在催化领域中应用较少.本文采用水热合成法,以4,4′-联吡啶(bipy)或1,4′-双咪唑-1-甲基苯(bix)为氮杂环配体,合成了两个铜配合物修饰的钼氧簇超分子化合物催化剂,分别记为[Cu(bipy)]4[Mo15O47]·2H2O(1)和[Cu(bix)][(Cubix)(δ-Mo8O26)0.5](2).催化剂1中包含一个由铜的4,4′-联吡啶有机链修饰的钼氧簇链,催化剂2是由1,4′-双咪唑-1-甲基苯有机配体、铜离子和八钼酸盐构筑的具有自穿插结构的超分子化合物.通过以叔丁基过氧化氢为氧化剂的烯烃环氧化催化反应,考察了两种催化剂的催化性能.结果表明,催化剂1和2对环辛烯或1-辛烯环氧化反应表现出较高的催化活性,性能均明显优于未引入铜配合物的超分子化合物(H2bix)[(Hbix)2(γ-Mo8O26)]2·H2O(3);在相同反应条件下,催化剂1表现出更高的催化活性;溶剂种类显著影响催化剂的催化性能,以乙腈为溶剂时,苯乙烯环氧化反应主产物为苯甲醛(仅有很少量的环氧化合物),而以氯仿为溶剂时,环氧化合物选择性显著提高;中断实验和循环测试结果表明,催化剂1和2在1-辛烯环氧化反应中均表现出良好的稳定性和循环使用性.FT-IR和XRD表征结果证实,经多次循环使用后催化剂结构基本保持不变,表明催化剂具有良好的结构稳定性.XPS表征结果表明,催化剂1中钼的正电性高于催化剂2,这是由于配体类型不同及钼氧簇结构不同所致.拥有较高正电性的钼物种通常会表现出更高的催化烯烃环氧化反应能力,这可能是催化剂1的催化活性优于催化剂2的主要原因.此外,通过结构分析可以看出,催化剂1具有更开放的框架结构,这更有利于反应物扩散,继而使催化剂表现出更高的催化活性.需要指出的是,催化剂1和2中存在的铜配合物也可能直接作为新的活性中心参与对氧化剂的活化,继而对催化剂性能(活性和选择性)产生影响;此外,铜配合物与钼氧簇之间较强的相互作用使所形成的超分子化合物具有良好的结构稳定性,继而使这类超分子化合物催化剂表现出较为优异的稳定性和循环使用性.  相似文献   

5.
锰(Ⅱ)呋喃甲醛Schiff碱催化苯乙烯环氧化的研究   总被引:1,自引:0,他引:1  
自1979年Groves首先以金属卟啉模拟细胞色素P-450,实现烯烃的环氧化^[1]以来,仿单加氧酶催化环氧化烯烃就成为仿酶催化领域里的一个非常活跃的研究课题^[2-5],但在这些报道中所用的模型化合物均为金属卟啉及其衍生物或Mn-Salen及其衍生物,这些化合物高昂的价格极大地限制了其应用前景。呋喃甲醛(俗称糠醛)取之于米糠或玉米芯,价格便宜且非石化产品,用它取代水杨醛不仅可降低成本,而且符合绿色化学要求。为此,本文选取了五种锰呋喃甲醛Schiff碱配合物作为模型化合物,以NaOCI为氧化剂,催化苯乙烯环氧化。讨论了配体结构、氧化物的pH值、轴配体、反应时间对催化环氧化反应的影响。  相似文献   

6.
Ag-TiO2纳米催化剂的制备、表征及环氧化催化性能   总被引:3,自引:0,他引:3  
环氧化合物是一类重要的有机合成中间体。工业上环氧乙烷是以Ag SrO CaO作催化剂 ,通过多相催化由乙烯和氧气氧化得到 ,其它的C2以上烯烃不能用该法生产 ,因为反应温度高 ,选择性很差。高温下的银催化乙烯的分子氧环氧化 ,选择性高于 80 % ,而用于丙烯的环氧化时 ,选择性大大降低[1] ,银多相催化分子氧环氧化烯烃的研究较活跃[2 5] 。本文合成了Ag TiO2 纳米催化剂 ,对其进行了表征 ,并初步研究了其环氧化催化性能。1 实验部分1 .1 仪器药品TestscanShimadzuFTIR 80 0 0series红外光谱仪 (KB…  相似文献   

7.
金属卟啉催化烯烃环氧化及反应机理研究*   总被引:5,自引:0,他引:5  
李臻  夏春谷 《化学进展》2002,14(5):384-390
本文就铁卟啉及锰卟啉模拟酶体系近年来在催化烯烃环氧化反应机理方面的最新研究成果进行了详细阐述。均相催化剂固载化技术的应用,使金属卟啉配合物担载于无机载体上克服了卟啉的二聚、催化剂再生等难题,有力地推动了金属卟啉配合物应用研究的发展。  相似文献   

8.
0引言手性环氧化物是合成许多天然产物、光学活性材料、光学活性药物等的重要中间体[1]。上世纪60年代以来,手性过渡金属配合物作为烯烃不对称环氧化的催化剂越来越受到人们的重视[2]。研究表明,某些席夫碱金属配合物具有仿酶催化活性,在仿酶催化剂的合成及应用方面占有重要地位[3]。目前,人们将水杨醛衍生物与光学活性胺的席夫碱金属配合物用于不对称环氧化、不对称环丙烷化等反应,具有很高的对映体选择性[4]。同时发现配体的电子效应直接影响配合物的催化活性和对映体选择性。为进一步研究配体的电子性能对配合物催化性能的影响,我们设计…  相似文献   

9.
本综述以催化活性中心的原子种类为分类标准,着重于催化活性物种和催化反应机理的研究,系统地总结了自90年代以来苯及其芳烃化合物羟化合成在均相催化体系的研究进展.从研究趋势分析,人们从简单的无机盐均相催化体系过渡到合成仿生含氮配体的络合物作为催化剂的液-液两相催化体系,目前以铁、钒、铜和钯为催化活性中心的配合物液相催化体系的研究比较集中.从研究机理上来看,研究者运用多种研究手段和方法,提出了在各自研究体系中的*OH、高价金属氧配合物、金属氧或过氧或氢过氧化合物(或自由基)的羟化活性物种的自由基机理和配合物机理等.  相似文献   

10.
用原位合成法,以酸性Al2O3为载体,酞菁类金属大环配合物为活性组分,合成出CoPc/Al2O3新型环氧化催化剂,红外、紫外-可见、热重分析及XPS证实能够利用该法在Al2O3上固载CoPc催化剂,且催化剂稳定性增加,不易流失.以分子氧为氧源,异丁醛为共还原剂考察CoPc/Al2O3催化剂对环己烯的催化环氧化活性及催化剂的重复使用情况.结果表明,与均相催化剂相比,固载后环己烯转化率增加了8%,环氧环己烷选择性增加了23%,催化剂重复使用4次后,活性仅降低4%.  相似文献   

11.
通过二茂铁甲醛与丙二胺反应得到双二茂铁基醛亚胺配体N~1,N~3-双二茂铁亚甲基丙烷-1, 3-二胺(FcMP), FcMP与MoO_2Cl_2(THF)_2的四氢呋喃溶液作用, 合成了双二茂铁基醛亚胺钼(VI)配合物. 以配合物为催化剂, 叔丁基过氧化氢为氧化剂, 分别以苯乙烯和环己烯为底物, 考察了温度、时间、催化剂量及溶剂对于烯烃均相环氧化反应的催化性能的影响. 结果表明, 在最优实验条件下, 反应12 h, 环己烯的转化率为88%, 环氧环己烷的选择性为98%;苯乙烯的转化率为84%, 氧化苯乙烯的选择性为76%. 催化剂经简单分离可回收使用, 且催化活性基本保持不变. 同时对环氧化反应的机理进行了初步探讨.  相似文献   

12.
An iron‐containing mesoporous molecular sieve, or Fe‐MCM‐41, was successfully synthesized the via sol–gel technique using silatrane and FeCl3 as the silicon and iron sources, and was characterized using various techniques. Many factors were investigated, namely, reaction temperature and time, calcination rate, and iron amount in the reaction mixture. It was found that the optimum conditions in which to synthesize Fe‐MCM‐41 was to carry out the reaction at 60 °C for 7 h using a 1 °C min?1 calcination rate and a 550 °C calcination temperature. The catalytic activity and selectivity of styrene epoxidation using hydrogen peroxide showed that the selectivity of the styrene oxide reached 65% at a styrene conversion of 22% over the 1%wt catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A new heterogeneous Schiff base copper(II) complex was prepared by reacting amino‐polystyrene with salicylaldehyde followed by complexation with cupric chloride. The structure of this immobilized complex has been established on the basis of scanning electron microscope (SEM), thermogravimetric analysis (TGA), elemental analysis employing atomic absorption spectroscopy (AAS), and spectrometric methods like diffuse reflectance spectra of solid (DRS) and fourier transform infrared spectroscopy (FTIR). Catalytic activity of this polymer anchored Cu(II) complex was tested by studying the oxidation of cyclohexene, styrene, and benzyl alcohol in the presence of tert‐ butylhydroperoxide as oxidant. Several parameters such as solvent, oxidant, reaction time, reaction temperature, amount of catalyst, and substrates oxidant ratio were varied to optimize the reaction condition. Under optimized reaction conditions, cyclohexene gave a maximum of 74% conversion with three major products 2‐cyclohexene‐1‐one, cyclohexene epoxide, and 2‐cyclohexene‐1‐ol. The conversions of styrene and benzylalcohol proceed with 53% and 77%, respectively. Styrene gives styrene epoxide as the major product while benzylalcohol gives benzaldehyde as the major product. The catalytic results reveal that polymer anchored copper(II) Schiff base complex can be recycled more than five times without much loss in the catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Oxo‐vanadium(IV) Schiff base complex supported on MCM‐41 as an organic–inorganic hybrid heterogeneous catalyst was synthesized with post‐grafting of MCM‐41 with 3‐aminoropropyltrimethoxysilane and subsequent reaction with 3,4‐dihydroxybenzaldehyde and then complexation with oxo‐vanadium acetylacetonate salt. The catalyst was analysed using a series of characterization techniques such as Fourier transform infrared spectroscopy, small‐angle X‐ray diffraction, nitrogen absorption isotherm, transmission electron microscopy and thermogravimetric analysis. The data collected provided evidence that the vanadium complex was anchored onto MCM‐41. High catalytic activity of this catalyst was observed in the oxidation of various sulfides and thiols (into sulfoxides and disulfides, respectively) with urea hydrogen peroxide as oxidant in high to excellent yields and selectivity under mild conditions. The heterogeneous catalyst could be recovered easily and reused several times without significant loss in catalytic activity and selectivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A novel nanocatalyst was developed based on covalent surface functionalization of MCM‐41 with polyethyleneimine (PEI) using [3‐(2,3‐Epoxypropoxy)propyl] trimethoxysilane (EPO) as a cross‐linker. Amine functional groups on the surface of MCM‐41 were then conjugated with iodododecane to render an amphiphilic property to the catalyst. Palladium (II) was finally immobilized onto the MCM‐41@PEI‐dodecane and the resulted MCM‐41@aPEI‐Pd nanocatalyst was characterized by FT‐IR, TEM, ICP‐AES and XPS. Our designed nanocatalyst with a distinguished core‐shell structure and Pd2+ ions as catalytic centers was explored as an efficient and recyclable catalyst for Heck and oxidative boron Heck coupling reactions. In Heck coupling reaction, the catalytic activity of MCM‐41@aPEI‐Pd in the presence of triethylamine as base led to very high yields and selectivity. Meanwhile, the MCM‐41@aPEI‐Pd as the first semi‐heterogeneous palladium catalyst was examined in the C‐4 regioselective arylation of coumarin via the direct C‐H activation and the moderate to excellent yields were obtained toward different functional groups. Leaching test indicated the high stability of palladium on the surface of MCM‐41@aPEI‐Pd as it could be recycled for several runs without significant loss of its catalytic activity.  相似文献   

16.
采用化学还原法制备了一种新型高活性和高选择性苯选择加氢制环己烯的Ru-Fe-B/ZrO2纳米非晶态合金催化剂,并利用透射电镜、选区电子衍射、X射线衍射和N2物理吸附仪等手段对催化剂进行了表征.重点研究了Ru-Fe-B/ZrO2催化剂活性和选择性的可调变性,及还原剂NaBH4浓度和洗涤后滤液的pH值对其催化性能的影响.结果表明,在新型Ru-Fe-B/ZrO2催化剂上,当苯转化54%时,环己烯选择性高达80%,同时环己烯选择性随苯转化率升高而缓慢下降.向反应浆液中添加酸性或碱性物质可以调变催化剂的活性和选择性,同时催化剂制备工艺和性能具有很好的可重复性.Ru-Fe-B/ZrO2催化剂融合了纳米和非晶材料的特性,这是其对苯选择加氢制环己烯表现出高活性和高选择性的主要原因.  相似文献   

17.
郭锐  马骏  杨锡尧 《分子催化》2002,16(1):19-24
通过氧吸附量、噻吩吸附热及反应速率常数的测定,研究了MoO3/MCM-41、MoO3-CoO(NiO)/MCM-41系列催化剂,发现,对于MoO3/MCM-41催化剂,当MoO3的质量分数(以MCM-41为底数,即MCM-41=1g时,MoO3含量为0.15g,下同)从15%增加到20%时,其噻吩的加氢硫(HDS)活性增大,至25%时活性下降,所对应的氧吸附量(mL/g催化剂)也是先增大后减少,并且两者有很好的线性对应关系,而且噻吩吸附热则基本保持不变,采用不同的MoO3-CoO(NiO)浸渍顺序制备的MoO3-CoO(NiO)/MCM-41催化剂中,先浸渍CoO(NiO)再浸渍MoO3的催化剂,其噻吩HDS活性明显优于对其它浸渍顺序制备的催化剂,同时催化剂的氧吸附量和噻吩吸附热也最大。  相似文献   

18.

The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes.  相似文献   

19.
杨刚  陈星  王小丽  邢卫红  徐南平 《催化学报》2013,34(7):1326-1332
制备了镍(II)席夫碱配合物官能化的MCM-41多相催化剂MCM-41-Ni.利用X射线粉末衍射、氮气物理吸附脱附、红外光谱、热重、电感耦合等离子体原子发射光谱、元素分析和透射电镜等方法对催化剂进行了表征.以氧气为氧化剂,MCM-41-Ni在催化环氧化苯乙烯的反应中表现出较高的催化活性;苯乙烯的转化率为95.2%,环氧苯乙烷的选择性为66.7%.系统地研究了反应温度、催化剂用量、溶剂以及反应时间对反应性能的影响.催化剂经过4次循环仍然表现出较好的稳定性和催化活性.  相似文献   

20.
A phenoxybutane‐based Schiff base complex of cis‐dioxo‐Mo(VI) was supported on paramagnetic nanoparticles and characterized using powder X‐ray diffraction, infrared, diffuse reflectance and atomic absorption spectroscopies, scanning and transmission electron microscopies and vibrating sample magnetometry. The separable nanocatalyst was tested for the selective epoxidation of cyclohexene, cyclooctene, styrene, indene, α‐pinene, 1‐octene, 1‐heptene, 1‐dodecene and trans‐stilbene using tert‐butyl hydroperoxide (80% in di‐tert‐butyl peroxide–water, 3:2) as oxidant in chloroform. The catalyst was efficient for oxidation of cyclooctene with 100% selectivity for epoxidation with 98% conversion in 10 min. We were able to separate magnetically the nanocatalyst using an external magnetic field and used the catalyst at least six successive times without significant decrease in conversion. The turnover frequency of the catalyst was remarkable (2556 h?1 for cyclooctene). The proposed nanomagnetic catalyst has advantages in terms of catalytic activity, selectivity, catalytic reaction time and reusability by easy separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号