首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stearic acid as a coadsorbent, which has a low dipole moment and high solubility, retarded the rate of dye adsorption during the competitive anchoring process on the TiO(2) layer in dye-sensitized solar cells (DSCs), thereby increasing the content of strongly bound dye on the TiO(2) surface. This resulted in an approximately 25% improvement in both J(SC) and the power conversion efficiency of the DSCs, even for much lower dye coverage.  相似文献   

2.
Multilayer assembly of nanowire arrays for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
Vertically ordered nanostructures synthesized directly on transparent conducting oxide have shown great promise for overcoming the limitations of current dye-sensitized solar cells (DSCs) based on random networks of nanoparticles. However, the synthesis of such structures with a high internal surface area has been challenging. Here we demonstrate a convenient approach that involves alternate cycles of nanowire growth and self-assembled monolayer coating processes for synthesizing multilayer assemblies of ZnO nanowire arrays and using the assemblies for fabrication of DSCs. The assembled multilayer ZnO nanowire arrays possess an internal surface area that is more than 5 times larger than what one can possibly obtain with single-layer nanowire arrays. DSCs fabricated using such multilayer arrays yield a power conversion efficiency of 7%, which is comparable to that of TiO(2) nanoparticle-based DSCs. The ordered structure with a high internal surface area opens up opportunities for further improvement of DSCs.  相似文献   

3.
ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells   总被引:1,自引:0,他引:1  
We describe the construction and performance of dye-sensitized solar cells (DSCs) based on arrays of ZnO nanowires coated with thin shells of amorphous Al(2)O(3) or anatase TiO(2) by atomic layer deposition. We find that alumina shells of all thicknesses act as insulating barriers that improve cell open-circuit voltage (V(OC)) only at the expense of a larger decrease in short-circuit current density (J(SC)). However, titania shells 10-25 nm in thickness cause a dramatic increase in V(OC) and fill factor with little current falloff, resulting in a substantial improvement in overall conversion efficiency, up to 2.25% under 100 mW cm(-2) AM 1.5 simulated sunlight. The superior performance of the ZnO-TiO(2) core-shell nanowire cells is a result of a radial surface field within each nanowire that decreases the rate of recombination in these devices. In a related set of experiments, we have found that TiO(2) blocking layers deposited underneath the nanowire films yield cells with reduced efficiency, in contrast to the beneficial use of blocking layers in some TiO(2) nanoparticle cells. Raising the efficiency of our nanowire DSCs above 2.5% depends on achieving higher dye loadings through an increase in nanowire array surface area.  相似文献   

4.
以TiOSO4和SiO2溶胶为原料, 采用沉淀法用氨水调节pH值制备TiO2和TiO2/SiO2催化剂. 制备的催化剂用X射线衍射(XRD), 扫描电镜(SEM), N2吸附(BET), 紫外-可见(UV-Vis)漫反射光谱, 程序升温脱附(NH3-TPD), 傅里叶变换红外(FT-IR)光谱技术分析. XRD谱图显示纯TiO2中锐钛型和金红石相共存, 且金红石相含量随pH值升高而增加. 但是, TiO2/SiO2催化剂只有锐钛型. 扫描电镜发现制备的催化剂呈类球形, 颗粒间相互交叠, 粒径在10-25 nm之间. TiO2和TiO2/SiO2光催化剂的比表面积随pH值升高略有增大. SiO2的添加会增大催化剂的比表面积. 程序升温脱附实验结果说明催化剂的表面酸量随pH值升高而增加. TiO2/SiO2的表面酸量比相同pH值制备的TiO2大. 红外光谱分析说明Si掺杂和高pH值有利于催化剂表面生成更多的羟基. TiO2和TiO2/SiO2光催化剂的催化活性随pH值升高而明显增强. TiO2/SiO2的光催化活性优于TiO2. TiO2/SiO2催化剂具有较好的耐久性.  相似文献   

5.
Au-TiO(2) interface on silica support was aimed to be produced in a controlled way by use of Au hydrosol. In method A, the Au colloids were modified by hydrolysis of the water-soluble Ti(IV) bis(ammoniumlactato)dihydroxide (TALH) precursor and then adsorbed on Aerosil SiO(2) surface. In method B, Au sol was first deposited onto the SiO(2) surface and then TALH was adsorbed on it. Regular and high-resolution transmission electron microscopy (TEM and HRTEM) and energy dispersive spectrometry (EDS) analysis allowed us to conclude that, in method A, gold particles were able to retain the precursor of TiO(2) at 1.5 wt % TiO(2) loading, but at 4 wt % TiO(2) content the promoter oxide appeared over the silica surface as well. With method B, titania was detected on silica at each TiO(2) concentration. In Au-TiO(2)/SiO(2) samples, the stability of Au particles against sintering was much higher than in Au/TiO(2). The formation of an active Au-TiO(2) perimeter was proven by the greatly increased CO oxidation activity compared to that of the reference Au/SiO(2).  相似文献   

6.
用气相流动吸附法制备了TiO_2/SiO_2复合载体,用浸渍法制备了MoO_3/(TiO_2/SiO_2)催化剂。应用XRD和LRS等技术研究了TiO_2在SiO_2表面及MoO_3在TiO_2/SiO_2表面上的分散状态。结果表明,TiO_2在复合载体中的含量低于其分散阈值时,它在SiO_2表面呈单层但非密置单层分散;MoO_3在催化剂中的含量低于其分散阈值时,它在复合载体表面亦呈单层但非密置单层分散。TiO_2与SiO_2之间、MoO_3与TiO_2/SiO_2之间相互作用都较弱。TiO_2在SiO_2表面的分散可改善MoO_3的分散状态,提高MoO_3在SiO_2表面上的分散阈值。  相似文献   

7.
Current-voltage characteristics, electron lifetimes (tau), and electron diffusion coefficients (D) of dye-sensitized TiO2 solar cells (DSCs) composed of liquid electrolytes were repeatedly measured over a period of time. It was found that the energy conversion efficiency of the DSCs using electrolytes composed of Li+ or tetrabutylammonium cation as the counter charges of I-/I3- redox couples decreased with the lapse of time. On the other hand, such a decrease was not observed for the DSC consisting of 1,2-dimethyl-3-propylimidazolium cation or of Li+ coupled with the addition of tert-butylpyridine. The decrease of the efficiency was in accordance with a decreased electron lifetime. The notable decrease in the presence of Li+ is probably caused by the excess amount of Li+ adsorption on the TiO2 surface.  相似文献   

8.
Dye-sensitized solar cells have been assembled using a sequential approach: a TiO(2) surface was functionalized with an anchoring ligand, followed by metallation with Zn(OAc)(2) or ZnCl(2), and subsequent capping with a chromophore functionalized 2,2':6',2'-terpyridine; the DSCs exhibit surprisingly good efficiencies confirming the effectiveness of the new strategy for zinc-based DSC fabrication.  相似文献   

9.
Double-walled carbon nanotubes (DWCNTs) have been studied for counter-electrode application in dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nanopowders by screen-printing technique on optically transparent-conducting glasses. A metal-free organic dye (indoline dye D102) is used as a sensitizer. DWCNTs are applied to substitute for platinum as counter-electrode materials. Morphological and electrochemical properties of the formed counter electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy, respectively. The electronic and ionic processes in platinum and DWCNT-based DSCs are analyzed and discussed. The catalytic activity and DSC performance of DWCNTs and Pt are compared. A conversion efficiency of 6.07% has been obtained for DWCNT counter-electrode DSCs. This efficiency is comparable to that of platinum counter-electrode-based devices.  相似文献   

10.
Multichromophoric dye-sensitized solar cells (DSCs) based on self-assembled zinc-porphyrinperyleneimide dyads on TiO(2) films display more efficient light-to-electrical energy conversion than DSCs based on individual dyes. Higher efficiency of multichromophoric dyes can be attributed to co-sensitization as well as vectorial electron transfer that lead to better electron-hole separation in the device.  相似文献   

11.
We prepared submicron-scale spherical hollow particles of anatase TiO2 by using a polystyrene-bead template. The obtained particles were very uniform in size, with a diameter of 490 nm and a shell thickness of 30 nm. The Brunauer-Emmett-Teller surface area measurements revealed a large value of 70 m2/g. The photocatalytic property was investigated by the complete decomposition of gaseous isopropyl alcohol under UV irradiation. It was indicated that the activity of the hollow spheres was 1.8 times higher than that of the conventional P25 TiO2 nanoparticles with a diameter of 30 nm. Furthermore, we fabricated a dye-sensitized solar cell (DSC) using an electrode of the TiO2 hollow spheres, and examined the photovoltaic performance under simulated sunlight. Although the per-area efficiency was rather low (1.26%) because of a low area density of TiO2 on the electrode, the per-weight efficiency was 2.5 times higher than those of the conventional DSCs of TiO2.  相似文献   

12.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

13.
微乳法制备纳米TiO2 /SiO2的结构及光催化研究   总被引:1,自引:0,他引:1  
Nanosized TiO2 and TiO2/SiO2 particles were prepared by hydrolysis of tetrabutyl titanate (TBOT) and tetraethyl orthosilicate (TEOS) in the TX-100 reverse microemulsion. These particles were characterized by TG-DSC, XRD, FTIR, TEM,N2 adsorption-desorption. Their photocatalytic activity was tested by degradation of methyl orange. The result shows that TiO2/SiO2 nanoparticles are with a monodispersed spherical phase and a uniform size distribution,and TiO2 particles are dispersed on the surface of SiO2. The band for Ti-O-Si vibration in FTIR was observed, the Ti-O-Si bond increased the stability of anatase TiO2, suppressed the phase transformation of titania from anatase to rutile. And due to the addition of SiO2, the average size of titania decreased from 38 nm in pure TiO2 to 5 nm in TiO2/SiO2. It was found, under UV light irradiation, TiO2/SiO2 particles showed higher activity than pure TiO2, and TiO2/SiO2(1/1) particles showed the highest photocatalytic activity on the photocatalytic decomposition of methyl orange, which was influenced by crystal structure, particle size, crystallinity and Surface area Characteristics.  相似文献   

14.
In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.  相似文献   

15.
The effects of additives on the quasi-Fermi levels (QFL) of TiO(2) films in dye-sensitized solar cells (DSCs) were investigated by a direct method. We observed that the values of QFL of TiO(2) at short circuit and open circuit are different and found for the first time the linear relationships between QFL shifts at short circuit and open circuit induced by 4-tert-butylpyridine (TBP), and that the slopes of the lines were significantly influenced by the nature of cations in the electrolyte. Different QFL shifts at short circuit and open circuit were observed in the presence of TBA(+). These quantitative results suggest that the QFL of TiO(2) films at short circuit and open circuit can be adjusted separately by developing suitable additives and cations, which will be helpful to further improve the efficiency of DSCs.  相似文献   

16.
The review presented below summarizes the up-to-date research efforts in using one-dimensional TiO(2) nanomaterials in dye-sensitized solar cells. A brief account of the methods of synthesis of the anisotropic nanomaterials as well as their photovoltaic performance in DSCs was summarily presented. The usefulness of the materials as scattering layer in DSCs was also surveyed.  相似文献   

17.
A D-π-A dye (KM-1) incorporating cyano-benzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66,700 M(-1) cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO(2). In addition, the adsorption of the dye on TiO(2) follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO(2) seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to design new dyes that combine good visible light harvesting with strong binding to the metal oxide surface.  相似文献   

18.
块状TiO2/SiO2气凝胶的非超临界干燥法制备及其表征   总被引:11,自引:0,他引:11  
分别通过TiO2和SiO2的单独溶胶和TiO2/SiO2复合凝胶,并添加干燥控制化学添加剂甲酰胺,形成比较完善的凝胶网络结构,同时通过正硅酸乙酯的乙醇溶液浸泡,低表面张力溶剂替换和分级陈化以及干燥等步骤,实现了块状TiO2/SiO2复合气凝胶的非超临界干燥制备.所得TiO2/SiO2气凝胶为无色或乳白色轻质块状多孔固体,表观密度约0.4~0.9g/cm3,孔隙率约80%~95%.它由直径约10nm的TiO2和SiO2微粒相互分散复合而成,孔洞直径约几十纳米.其相态SiO2为无定形,TiO2为锐钛矿晶型.随着焙烧温度的升高,直到800℃不发生相变化.  相似文献   

19.
Dye-sensitized solar cells (DSCs) using solid-state hole conductor, poly(3,4-ethylenedioxythiophene) (PEDOT), were fabricated using in-situ photoelectrochemical polymerization giving short-circuit photocurrent density of 3.20 mA cm-2, open-circuit voltage of 0.77 V, and fill factor of 0.50, and the resulting overall conversion efficiency of 1.25% on average under air mass 1.5 conditions. Furthermore, the electron transport properties of the DSCs based on PEDOT (PEDOT/DSCs) were analyzed using light intensity modulation induced photocurrent and photovoltage decay (SLIM-PCV) measurements and electrochemical impedance spectroscopy (EIS) measurements, and then compared to those of the DSCs based on organic liquid electrolyte containing I-/I3- as redox couple (liquid iodide/iodine electrolyte-DSCs, iodide/DSCs for short). The effective filling of PEDOT in the mesopores of dyed TiO2 layers is an important key to achieve the respectable conversion efficiency of PEDOT/DSCs that is comparable with iodide/DSCs.  相似文献   

20.
表面键联型TiO2/SiO2固定化催化剂的结构及催化性能   总被引:7,自引:0,他引:7  
胡春  王怡中  汤鸿霄 《催化学报》2001,22(2):185-188
 采用浸渍法制备了表面键联型TiO2/SiO2固定化光催化剂.XRD\r\n,FT-IR,XPS和BET比表面积测定结果表明,TiO2通过Ti-O-Si联结\r\n负载于多孔硅胶的表面,由此提出TiO2/SiO2的结构模型.考察了多孔\r\n硅胶的粒度及氧化钛负载量对催化剂活性的影响.对活性艳红K-2G(\r\nR15)的光催化脱色反应,最佳的光催化剂30%TiO2/SiO2(Ims30)比\r\nB-TiO2粉末的催化速率快3倍.随着载体粒度的减小,催化剂的比表面\r\n积增大,催化活性升高;多孔硅胶不仅起着支持体的作用,而且具有分\r\n散的作用;多孔硅胶具有很好的透光性.经ξ-电位测定,所制备催化\r\n剂的等电点为3.0pH单位,表明催化剂表面呈酸性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号