首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The performance of dye-sensitized solar cells (DSCs) was compared before and after processing the TiO(2) electrodes by minute-order electrochemical reactions with metal nitrates, where the metals were Mg, Zn, Al, and La, in 2-propanol. An overcoating of metal hydroxide was formed without the need for a sintering process, and magnesium hydroxide was found to give the largest improvement in photovoltage, fill factor, and eventually overall conversion efficiency of the DSCs. To analyze the nature of the improvement, the diffusion coefficient (D) and electron lifetime (tau) were determined. While little influence of overcoating on D was seen, a correlation between the increase in tau and V(oc) was observed for the metals examined here. The remarkable improvement in the electron lifetime of the DSCs suggests that an overcoating with magnesium hydroxide species function as the blocking layers at the fluorine-doped tin oxide and TiO(2) interfaces, thus contributing to the suppression of electron leakage, i.e., recombination processes between unidirectional transporting electrons and poly-iodides such as tri-iodide in the processed TiO(2) photoelectrode systems. The increase in V(oc) can be explained by the increased electron density caused by the increase in electron lifetime.  相似文献   

2.
Multilayer assembly of nanowire arrays for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
Vertically ordered nanostructures synthesized directly on transparent conducting oxide have shown great promise for overcoming the limitations of current dye-sensitized solar cells (DSCs) based on random networks of nanoparticles. However, the synthesis of such structures with a high internal surface area has been challenging. Here we demonstrate a convenient approach that involves alternate cycles of nanowire growth and self-assembled monolayer coating processes for synthesizing multilayer assemblies of ZnO nanowire arrays and using the assemblies for fabrication of DSCs. The assembled multilayer ZnO nanowire arrays possess an internal surface area that is more than 5 times larger than what one can possibly obtain with single-layer nanowire arrays. DSCs fabricated using such multilayer arrays yield a power conversion efficiency of 7%, which is comparable to that of TiO(2) nanoparticle-based DSCs. The ordered structure with a high internal surface area opens up opportunities for further improvement of DSCs.  相似文献   

3.
A major loss mechanism in dye-sensitized solar cells (DSCs) is recombination at the TiO(2)/electrolyte interface. Here we report a method to reduce greatly this loss mechanism. We deposit insulating and transparent silica (SiO(2)) onto the open areas of a nanoparticulate TiO(2) surface while avoiding any deposition of SiO(2) over or under the organic dye molecules. The SiO(2) coating covers the highly convoluted surface of the TiO(2) conformally and with a uniform thickness throughout the thousands of layers of nanoparticles. DSCs incorporating these selective and self-aligned SiO(2) layers achieved a 36% increase in relative efficiency versus control uncoated cells.  相似文献   

4.
Dye-sensitized solar cells (DSCs) using solid-state hole conductor, poly(3,4-ethylenedioxythiophene) (PEDOT), were fabricated using in-situ photoelectrochemical polymerization giving short-circuit photocurrent density of 3.20 mA cm-2, open-circuit voltage of 0.77 V, and fill factor of 0.50, and the resulting overall conversion efficiency of 1.25% on average under air mass 1.5 conditions. Furthermore, the electron transport properties of the DSCs based on PEDOT (PEDOT/DSCs) were analyzed using light intensity modulation induced photocurrent and photovoltage decay (SLIM-PCV) measurements and electrochemical impedance spectroscopy (EIS) measurements, and then compared to those of the DSCs based on organic liquid electrolyte containing I-/I3- as redox couple (liquid iodide/iodine electrolyte-DSCs, iodide/DSCs for short). The effective filling of PEDOT in the mesopores of dyed TiO2 layers is an important key to achieve the respectable conversion efficiency of PEDOT/DSCs that is comparable with iodide/DSCs.  相似文献   

5.
Ultrathin SnO(2) layers were deposited on FTO substrate by the layer-by-layer (LbL) self-assembly technique utilizing negatively charged 2.5 nm sized SnO(2) nanoparticles (NPs) and cationic poly(allylamine hydrochloride) (PAH). For the construction of dye-sensitized solar cells (DSC), the bulk TiO(2) layer was deposited over the (PAH/SnO(2))(n) (n = 1-10) and subsequently calcined at 500 °C to remove organic components. With introducing four layers of self-assembled SnO(2) interfacial layer (IL), the short circuit current density (J(sc)) of DSCs was increased from 8.96 to 10.97 mA/cm(2), whereas the open circuit voltage (V(oc)) and fill factor (FF) were not appreciably changed. Consequently, photovoltaic conversion efficiency (η) was enhanced from 5.43 to 6.57%. Transient photoelectron spectroscopic analyses revealed that the ultrathin SnO(2) layer considerably increased the electron diffusion coefficient (D(e)) in TiO(2) layer, but the electron lifetime (τ(e)) was decreased unexpectedly. The observed unusual photovoltaic properties would be caused by the unique conduction band (CB) location of the SnO(2), inducing the cascadal energy band matching among the CBs of TiO(2), SnO(2), and FTO.  相似文献   

6.
At present, the photovoltaic performance of quantum dot-sensitized solar cells (QDSCs) is still much lower than conventional DSCs. Appropriate porous TiO(2) photoanodes for QDSCs need to be further investigated, and optimization of the nanoparticle-based photoanodes is highly desirable as well. In this article, the influence of the structural properties of various TiO(2) photoanodes on CdS/CdSe-sensitized solar cells have been systematically studied. Quantitative analyses of light-harvesting efficiency (LHE) and electron-transfer yield (Φ(ET)) for the QDSCs are investigated for the first time. It is revealed that the LHE increases in the long wavelength region with the addition of large size TiO(2) particles to the transparent film. In the meantime, the balance between the light scattering and surface area also needs to be controlled, which can significantly restrain the dark current of the device. A double-layer photoanodic structure can give 4.92% of light-to-electricity conversion efficiency with a photoactive area of 0.15 cm(2).  相似文献   

7.
Performance of dye-sensitized solar cells (DSCs) was investigated depending on the compositions of the electrolyte, i.e., the electrolyte with a different cation such as Li(+), tetra-n-butylammonium (TBA(+)), or 1,2-dimethyl-3-propylimidazolium (DMPIm(+)) in various concentrations, with and without 4-tert-butylpyridine (tBP), and with various concentrations of the I(-)/I(3)(-) redox couple. Current-voltage characteristics, electron lifetime, and electron diffusion coefficient were measured to clarify the effects of the constituents in the electrolyte on the charge recombination kinetics in the DSCs. Shorter lifetimes were found for the DSCs employing adsorptive cations of Li(+) and DMPIm(+) than for a less-adsorptive cation of TBA(+). On the other hand, the lifetimes were not influenced by the concentrations of the cations in the solutions. Under light irradiation, open-circuit voltages of DSCs decreased in the order of TBA(+)> DMPIm(+) > Li(+), and also decreased with the increase of [Li(+)]. The decreases of open-circuit voltage (V(oc)) were attributed to the positive shift of the TiO(2) conduction band potential (CBP) by the surface adsorption of DMPIm(+) and Li(+). These results suggest that the difference of the free energies between that of the electrons in the TiO(2) and of I(3)(-) has little influence on the electron lifetimes in the DSCs. The shorter lifetime with the adsorptive cations was interpreted with the thickness of the electrical double layer formed by the cations, and the concentration of I(3)(-) in the layer, i.e., TBA(+) formed thicker double layer resulting in lower concentration of I(3)(-) on the surface of the TiO(2). The addition of 4-tert-butylpyridine (tBP) in the presence of Li(+) or TBA(+) showed no significant influence on the lifetime. The increase of V(oc) by the addition of tBP into the electrolyte containing Li(+) and the I(-)/I(3)(-) redox couple was mainly attributed to the shift of the CBP back to the negative potential by reducing the amount of adsorbed Li cations.  相似文献   

8.
Dye-sensitized solar cells were fabricated based on the composites of anatase TiO2 nanoparticles and single crystalline anatase TiO2 nanowires. Nanoparticle/nanowire composites can possess the advantages of both building blocks, i.e., the high surface area of nanoparticle aggregates and the rapid electron transport rate and the light scattering effect of single-crystalline nanowires. Three different composites were prepared with 5 wt %, 20 wt %, and 77 wt % nanowires, respectively. The performances of composite solar cells were compared with pure nanoparticle cells at a series of film thickness. With low nanowire concentrations (5 wt % and 20 wt %), the composite films maintain similar specific surface area as the pure nanoparticle films, while the composite cells show higher short-circuit current density and open-circuit voltage. An enhancement of power efficiency from 6.7% for pure nanoparticle cells to 8.6% for the composite cell with 20 wt % nanowires has been achieved under 1 Sun AM1.5 illumination (100 mW/cm2). For the composite film with 77 wt % nanowires, the nanowires became the major phase. Their less compact packing resulted in significant decrease of the specific surface area, and thus the current density. However, with the increase of film thickness, the current density showed a continuous increase in the whole thickness range up to 17 microm, indicating the improved electron diffusion length due to the formed nanowire network. The nanowires also helped to preserve crack-free thick films. These results show that employing nanoparticle/nanowire composites represents a promising approach for further improving the efficiencies of sensitized solar cells.  相似文献   

9.
A series of novel metal-free organic dyes TC301-TC310 with relatively high HOMO levels were synthesized and applied in dye-sensitized solar cells (DSCs) based on electrolytes that contain Br(-)/Br(3)(-) and I(-)/I(3)(-). The effects of additive Li(+) ions and the HOMO levels of the dyes have an important influence on properties of the dyes and performance of DSCs. The addition of Li(+) ions in electrolytes can broaden the absorption spectra of the dyes on TiO(2) films and shift both the LUMO levels of the dyes and the conduction band of TiO(2), thus leading to the increase of J(sc) and the decrease of V(oc). Upon using Br(-)/Br(3)(-) instead of I(-)/I(3)(-), a large increase of V(oc) is attributed to the enlarged energy difference between the redox potentials of electrolyte and the Fermi level of TiO(2), as well as the suppressed electron recombination. Incident photon to current efficiency (IPCE) action spectra, electrochemical impedance spectra, and nanosecond laser transient absorption reveal that both the electron collection yields and the dye regeneration yields (Φ(r)) depend on the potential difference (the driving forces) between the oxidized dyes and the Br(-)/Br(3)(-) redox couple. For the dyes for which the HOMO levels are more positive than the redox potential of Br(-)/Br(3)(-) sufficient driving forces lead to the longer effective electron-diffusion lengths and almost the same efficient dye regenerations, whereas for the dyes for which the HOMO levels are similar to the redox potential of Br(-)/Br(3)(-), insufficient driving forces lead to shorter effective electron-diffusion lengths and inefficient dye regenerations.  相似文献   

10.
Surface modification plays a crucial role in improving the efficiency of dye-sensitized solar cells (DSSCs), but the reported surface treatments are in general superior to the untreated TiO(2) but inferior to the typical TiCl(4)-treated TiO(2) in terms of solar cell performance. This work demonstrates a two-step treatment of the nanoporous titania surface with strontium acetate [Sr(OAc)(2)] and TiCl(4) in order, each step followed by sintering. An electronically insulating layer of SrCO(3) is formed on the TiO(2) surface via the Sr(OAc)(2) treatment and then a fresh TiO(2) layer is deposited on top of the SrCO(3) layer via the TiCl(4) treatment, corresponding to a double layer of Sr(OAc)(2)/TiO(2) coated on the TiO(2) surface. As compared to the typical TiCl(4)-treated DSSC, the Sr(OAc)(2)-TiCl(4) treated DSSC improves short-circuit photocurrent (J(sc)) by 17%, open-circuit photovoltage (V(oc)) by 2%, and power conversion efficiency by 20%. These results indicate that the Sr(OAc)(2)-TiCl(4) treatment is better than the often used TiCl(4) treatment for fabrication of efficient DSSCs. Charge density at open circuit and controlled intensity modulated photocurrent/photovoltage spectroscopy reveal that the two electrodes show almost same conduction band level but different electron diffusion coefficient and charge recombination rate constant. Owing to the blocking effect of the SrCO(3) layer on electron recombination with I(3)(-) ions, the charge recombination rate constant of the Sr(OAc)(2)-TiCl(4) treated DSSC is half that of the TiCl(4)-treated DSSC, accounting well for the difference of their V(oc). The improved J(sc) is also attributed to the middle SrCO(3) layer, which increases dye adsorption and may improve charge separation efficiency due to the blocking effect of SrCO(3) on charge recombination.  相似文献   

11.
All-solid-state inorganic-organic heterojunction solar cells (HSCs) were designed and fabricated using earth-abundant element, non-toxic, low-cost SnS-sensitized mesoporous spherical TiO(2) films under ambient conditions using a solution-processable, simple, and convenient fabrication technique. SnS-HSCs show a promising photovoltaic performance, with an efficiency of 2.8% and a significantly high V(OC) of 0.85 V.  相似文献   

12.
Two classes of phosphonic acid-bearing organic molecules, 2-oligothiophene phosphonic acid and omega-(2-thienyl)alkyl phosphonic acid were adopted as interface modifiers (IMs) of the TiO(2) surface, to increase its compatibility with poly(3-hexylthiophene) (P3HT). The self-assembled monolayers of these molecules on titania surface were characterized by making contact angle measurements and X-ray photoelectron spectroscopy (XPS). Atomic force microscopic (AFM) images revealed that the adsorption of IMs effectively smooths the TiO(2) surface. Both photoluminescence (PL) spectroscopy and PL lifetime measurements were made to investigate the photoinduced properties of the TiO(2)/IM/P3HT layered-junction. The PL quenching efficiency increased with the number of thiophene rings and as the alkyl chain-length in IMs decreased. Meanwhile, the decline in the PL lifetime followed a similar trend as the PL quenching efficiency. Additionally, the power conversion efficiency (PCE) of the ITO/TiO(2)/IM/P3HT/Au devices was examined by measuring their photocurrent density-applied voltage (J-V) curves. The experimental results indicated that the short-circuit current density (J(SC)) increased with the number of thiophene units and as the hydrocarbon chain-length in IMs decreased. However, the open-circuit voltage (V(OC)) of the devices slightly fell as the energy level of the highest occupied molecular orbital (HOMO) of IM decreased. The PCE of the device with 2-terthiophene phosphonic acid was 2.5 times that of the device with 10-(2-thienyl)decyl phosphonic acid.  相似文献   

13.
Replacing the nonyl groups on the solar cell dye Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(NCS)(2) (Z-907) with amino groups results in a marked decrease in solar cell performance. This is despite the fact that the amino derivative (Z-960) has more favourable light absorption characteristics than Z-907 when used with thick nanocrystalline TiO(2) layers. Electron transfer to the electrolyte from the exposed fluorine-doped tin oxide (FTO) substrate is particularly fast in cells employing the Z-960 dye if a compact TiO(2) blocking layer is not used. The kinetics of electron transfer from the nanocrystalline TiO(2) layer in DSCs employing Z-960 are comparable to those of bare TiO(2) and ca. 2 to 5 times faster than for cells employing Z-907. The faster charge recombination in cells employing Z-960 lowers open-circuit photovoltage and results in very significant charge collection losses that lower short-circuit photocurrent. Voltammetric measurements show that surface modification of FTO electrodes with Z-960 results in slightly more facile charge transfer to acceptor species in triiodide/iodide electrolytes in the dark. A simpler molecule, p-aminobenzoic acid, more dramatically catalyses this charge transfer reaction. Conversely, chemical modification of FTO electrodes with Z-907 or p-toluic acid retards charge transfer kinetics. Similar results are obtained for nanocrystalline TiO(2) electrodes modified with these benzoic acid derivatives. These results strongly imply that surface adsorbed molecules bearing amino groups, including dye molecules, can catalyse charge recombination in dye-sensitized solar cells.  相似文献   

14.
This paper describes the influence of acid pretreatment ofTiO2 mesoporous films prior to dye sensitization on the performance of dye-sensitized solar cells based on [(C4H9)4N]3[Ru(Htcterpy)(NCS)3] (tcterpy = 4,4',4"-tricarboxy- 2,2',2"-terpyridine), the so-called black dye. The HCl pretreatment caused an increase in overall efficiency by 8%, with a major contribution from photocurrent improvement. It is speculated, from the analysis of incident photon-to-electron conversion efficiency, UV-vis absorption spectra, redox properties of the dye and TiO2, and the impedance spectra of the dye-sensitized solar cells, that photocurrent enhancement is attributed to the increases in electron injection and/or charge collection efficiency besides the improvement of light harvesting efficiency upon HCl pretreatment. Open-circuit photovoltage (V(oc)) remained almost unchanged in the case of significant positive shift of flat band potential for TiO2 upon HCl pretreatment. The suppression of electron transfer from conduction band electrons to the I3- ions in the electrolyte upon HCl pretreatment, reflected by the increased resistance at the TiO2/dye/electrolyte interface and reduced dark current, resulted in a V(oc) gain, which compensated the V(oc) loss due to the positive shift of the flat band. Using the HCl pretreatment approach, 10.5% of overall efficiency with the black dye was obtained under illumination of simulated AM 1.5 solar light (100 mW cm(-2)) using an antireflection film on the cell surface.  相似文献   

15.
Stearic acid as a coadsorbent, which has a low dipole moment and high solubility, retarded the rate of dye adsorption during the competitive anchoring process on the TiO(2) layer in dye-sensitized solar cells (DSCs), thereby increasing the content of strongly bound dye on the TiO(2) surface. This resulted in an approximately 25% improvement in both J(SC) and the power conversion efficiency of the DSCs, even for much lower dye coverage.  相似文献   

16.
使用Al2O3和N3染料制备了一种交替组装的结构, 该结构能够提高染料敏化太阳能电池(DSCs)的开路电压(Voc), 短路电流(Jsc)和转换效率(η). 为了研究(染料/Al2O3)交替组装结构的作用机理, 使用电化学阻抗谱技术分析了电池的界面电阻. 分析结果表明, 随着交替组装结构中(染料/Al2O3)单元的增加, 光阳极/染料/电解质界面的电阻降低, 电池性能随之提高. 基于电化学阻抗谱分析结果, 建立了一系列的等效电路模型, 从理论上解释了(染料/Al2O3)交替组装结构的作用机理.  相似文献   

17.
Current-voltage characteristics, electron lifetimes (tau), and electron diffusion coefficients (D) of dye-sensitized TiO2 solar cells (DSCs) composed of liquid electrolytes were repeatedly measured over a period of time. It was found that the energy conversion efficiency of the DSCs using electrolytes composed of Li+ or tetrabutylammonium cation as the counter charges of I-/I3- redox couples decreased with the lapse of time. On the other hand, such a decrease was not observed for the DSC consisting of 1,2-dimethyl-3-propylimidazolium cation or of Li+ coupled with the addition of tert-butylpyridine. The decrease of the efficiency was in accordance with a decreased electron lifetime. The notable decrease in the presence of Li+ is probably caused by the excess amount of Li+ adsorption on the TiO2 surface.  相似文献   

18.
Double-walled carbon nanotubes (DWCNTs) have been studied for counter-electrode application in dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nanopowders by screen-printing technique on optically transparent-conducting glasses. A metal-free organic dye (indoline dye D102) is used as a sensitizer. DWCNTs are applied to substitute for platinum as counter-electrode materials. Morphological and electrochemical properties of the formed counter electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy, respectively. The electronic and ionic processes in platinum and DWCNT-based DSCs are analyzed and discussed. The catalytic activity and DSC performance of DWCNTs and Pt are compared. A conversion efficiency of 6.07% has been obtained for DWCNT counter-electrode DSCs. This efficiency is comparable to that of platinum counter-electrode-based devices.  相似文献   

19.
We prepared submicron-scale spherical hollow particles of anatase TiO2 by using a polystyrene-bead template. The obtained particles were very uniform in size, with a diameter of 490 nm and a shell thickness of 30 nm. The Brunauer-Emmett-Teller surface area measurements revealed a large value of 70 m2/g. The photocatalytic property was investigated by the complete decomposition of gaseous isopropyl alcohol under UV irradiation. It was indicated that the activity of the hollow spheres was 1.8 times higher than that of the conventional P25 TiO2 nanoparticles with a diameter of 30 nm. Furthermore, we fabricated a dye-sensitized solar cell (DSC) using an electrode of the TiO2 hollow spheres, and examined the photovoltaic performance under simulated sunlight. Although the per-area efficiency was rather low (1.26%) because of a low area density of TiO2 on the electrode, the per-weight efficiency was 2.5 times higher than those of the conventional DSCs of TiO2.  相似文献   

20.
In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号