首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The electronic and spin properties of different nanocrystals of carbon are studied. The properties of these cluster systems are modeled in terms of the ab initio (Hartree-Fock) and semiempirical (PM3, AM1) quantum-chemical methods. The calculations are performed for different carbon nanocluster systems: defect-free and with [NV]? centers, hydrogen passivated (C38H42, C71H84, C86H78), and with a free (unpassivated) surface (C38, C71, C86). The spin properties of unhydrated nanoclusters were studied for the first time. The structure of all the clusters under study was optimized using the total energy minimization principle. It is shown that, in the case of hydrated carbon nanocrystals passivated by hydrogen atoms, diamond-like clusters are formed. The atomic structure of an unpassivated nanocrystal depends on the number of atoms in the cluster, as well as on its initial geometrical parameters. In some cases, clusters with a fullerene-like surface are formed. In hydrogenpassivated diamond nanocrystals with [NV]? centers, the spin density is localized at the nuclei of C atoms nearest to the center vacancies. For the unpassivated counterparts, the spin density is localized at the nuclei of C atoms forming the surface of the corresponding nanocrystal.  相似文献   

2.
The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si3N4) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.  相似文献   

3.
The results of investigation and analysis of electro-exploded aluminum nanopowders, whose surface were passivated with the following substances: liquids - nitrocellulose (NC), oleic acid (C17H33COOH) and stearic acid (C17H35COOH), suspended in kerosene and ethanol, fluoropolymer; solids - boron and nickel; gases - N2, CO2 and air (for a comparison) are discussed. The surface protection for the aluminum nanopowders by coatings of different chemical origins leads to the some advantages of the powders properties for an application in energetic systems, e.g. solid propellants and “green” propellants (Al-H2O). Aluminum nanopowders with a protected surface showed the increased stability to oxidation in air during the storage period and higher reactivity by heating. The TEM-visual diagram of the formation and stabilization of the coatings on the particles has been proposed on the basis of experimental results. The kinetics of the interaction of aluminum nanopowders with air has been discussed. The recommendations concerning an efficiency of the protective “non-Al2O3” layers on aluminum nanoparticles were proposed.  相似文献   

4.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

5.
Resonating valence bond theory combined with DFT calculations permit to build a simple model for the dissociation of H2 on palladium surface. Based on analysis of the electron transfer and total energy for different geometries of the Pd2–H2 and Pd5–H2 systems it is found that the predissociative state corresponds to a tilted molecule adsorbed on the surface.  相似文献   

6.
氮气氛下(100)织构金刚石薄膜的成核与生长研究   总被引:4,自引:1,他引:3       下载免费PDF全文
李灿华  廖源  常超  王冠中  方容川 《物理学报》2000,49(9):1756-1763
利用热丝化学气相沉积法研究了氮气浓度对金刚石薄膜成核和生长的影响.实验发现氮气的 加入对金刚石成核密度影响不大,但促进了已形成的金刚石核的长大.适量的氮气不仅使金 刚石生长速率得到很大的提高,而且稳定了金刚石薄膜(100)面的生长,使金刚石薄膜具有 更好的(100)织构.利用原位光发射谱对衬底附近的化学基团进行了研究.研究表明,氮气的 引入使得金刚石生长的气相化学和表面化学性质发生了很大变化.含氮基团的萃取作用提高 了金刚石表面氢原子的脱附速率,从而提高了金刚石膜的生长速率.而含氮基团的选择吸附 使金刚石 关键词: 氮气 金刚石薄膜 织构 原位光发射谱  相似文献   

7.
In this paper, hydrogen-doped industrial diamonds and gem diamonds were synthesized in the Fe–Ni–C system with C10H10Fe additive, high pressures and high temperatures range of 5.2–6.2?GPa and 1250–1460°C. Experimental results indicate similar effect of hydrogen on these two types of diamonds: with the increasing content of C10H10Fe added in diamond growth environment, temperature is a crucial factor that sensitively affects the hydrogen-doped diamond crystallization. The temperature region for high-quality diamond growth becomes higher and the morphology of diamond crystal changes from cube-octahedral to octahedral. The defects on the {100} surfaces of diamond are more than those on the {111} surfaces. Fourier transform infrared spectroscopy (FTIR) results indicate that the hydrogen atoms enter into the diamond crystal lattice from {100} faces more easily. Most interestingly, under low temperature, nitrogen atoms can also easily enter into the diamond crystal lattice from {100} faces cooperated with hydrogen atoms.  相似文献   

8.
Tribochemical reaction of DLC coating in water was investigated by using a stable isotopic tracer, 18O labeled water (H218O), to carry out the friction test of DLC coating and 440C ball pair, and using ToF-SIMS to analyze the worn surfaces. The result showed that DLC coating tribochemically reacted with water to form hydrophilic hydroxyl and carboxyl groups on surface, and suggested that the formed hydroxyl mainly combined with the secondary or tertiary carbons on the surface. The surface layer on the counter ball mainly consisted of C from the coating, Cr, Fe from the ball and 18O from water, and was rich in 18OH. It is thought that the hydrophilic groups formed at the interfaces play an important role in low friction and wear behaviors of DLC coating and the counter part in a water environment. Comparing with that obtained from the test in D2O, the result also suggests that hydrogen/deuterium exchange is easy to occur between the products containing OD on the mated ball and some adsorbates in an ambient air environment.  相似文献   

9.
Electronic-state calculations of diamond nanocrystals simulated by ultrasmall quantum spheres of diamond passivated by hydrogen are performed by the extended Hückel-type nonorthogonal tight-binding method. Two kinds of surface configuration (ideal and dimerized ones) are studied. Special attention has been paid to surface as well as quantum-confinement effects. The calculated results have demonstrated that, while the HOMO (highest occupied molecular orbital) energies are independent of the surface configuration and depend clearly on the size of the diamond spheres, the LUMO (lowest unoccupied molecular orbital) energies of the diamond spheres with one or two dimers on the surface are rather insensitive to the size, in agreement with experiment. The latter is found to be ascribed to the occurrence of surfacelike states associated with the backbonds of the dimer. It is shown that calculated lifetimes across the energy gap are less than 100 microseconds, suggesting that the diamond nanocrystals are promising light-emitting materials.  相似文献   

10.
Hydrogen cyanide (HCN) is well-accepted as a main nitrogen-containing precursor from fuel nitrogen to nitrogen oxides. When using coal as fuel with a CuO-based oxygen carrier in chemical looping combustion (CLC), complex heterogeneous reactions exist among the system of HCN, O2, NO, H2O, and CuO particles. This work performs density functional theory (DFT) calculations to systematically probe the microscopic HCN heterogeneous reactions over the CuO particle surface. The results indicate that HCN is chemisorbed on the CuO surface, and the third dissociation step within the consecutive three-step HCN dissociations (HCN*→CN*→NCO*→N*) is the rate-determining step. Namely, the CN*/NCO* radicals can be deemed as an indicator of the performance of HCN removal due to their quite higher dissociation energies. With the existence of O2, H2O, and NO, the reaction mechanism of HCN conversion becomes extremely complex. Both DFT calculations and kinetic analyses determine that O2, NO, and H2O all significantly accelerate the consumption of CN*/NCO* radicals to produce various N-containing species (NOx or NH3) to different extents. Finally, a skeletal reaction network in a system of O2/NO/H2O/HCN is concluded, which clearly elucidates that CuO exhibits excellent catalytic activity toward HCN removal.  相似文献   

11.
The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz. 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu-Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼95% sp3 bonded carbon in the films. The films are unform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.  相似文献   

12.
利用基质隔离红外光谱结合理论计算,研究了激光溅射获得的第五族金属原子和硫化氢分子的反应. 结果表明金属原子插入H2S的H-S化学键形成HMSH分子(M=V,Nb,Ta). 对Nb和Ta该HMSH分子重排为H2MS分子. HMSH分子和H2S进一步反应生成H2M(SH)2分子. 通过D2S和H234S同位素标定确定了产物的分子结构,同时我们用DFT(B3LYP和BPW91)理论计算预测了产物分子的能量、结构和振动频率. 通过DFT IRC计算研究了第五族金属原子和2S分子的反应机理. HVSH分子通过光照解离为VS和H2,然后通过退火可以发生VS和H2复合反应. 计算表明HVSH释放H2需要16.9 kcal/mol的活化能及吸热13.5 kcal/mol.  相似文献   

13.
CO-H interaction and H bulk dissolution on Pd(1 1 1) were studied by sum frequency generation (SFG) vibrational spectroscopy and density functional theory (DFT). The theoretical findings are particularly important to rationalize the experimentally observed mutual site blocking of CO and H and the effect of H dissolution on coadsorbate structures. Dissociative hydrogen adsorption on CO-precovered Pd(1 1 1) is impeded due to an activation barrier of ∼2.5 eV for a CO coverage of 0.75 ML, an effect which is maintained down to 0.33 ML CO. Preadsorbed hydrogen prevented CO adsorption at 100 K, while hydrogen was replaced from the surface by CO above 125 K. The temperature-dependent site blocking of hydrogen originates from the onset of hydrogen diffusion into the Pd bulk around 125 K, as shown by SFG and theoretical calculations using various approaches. When Pd(1 1 1) was exposed to 1:1 CO/H2 mixtures at 100 K, on-top CO was absent in the SFG spectra although hydrogen occupies only threefold hollow sites on Pd(1 1 1). DFT attributes the absence of on-top CO to H atoms diffusing between hollow sites via bridge sites, thereby destabilizing neighboring on-top CO molecules. According to the calculations, the stretching frequency of bridge-bonded CO with a neighboring bridge-bonded hydrogen atom is redshifted by 16 cm−1 when compared to bridging CO on the clean surface. Implications of the observed effects on hydrogenation reactions are discussed and compared to the C2H4-H coadsorption system.  相似文献   

14.
顾利萍  唐春玖  江学范 《中国物理 B》2011,20(5):58104-058104
A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond(NCD) films produced by only adding 0.24% N2 into 4% CH4 /H2 plasma,as compared to the high quality transparent microcrystalline diamond(MCD) films,grown using the same growth parameters except for nitrogen.These experimental results clearly evidence that defect formation and impurity incorporation(for example,N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CH x(x=1,2,3) growth species for adsorption sites.  相似文献   

15.
Z. Aydu?an  B. Alkan  M. Çakmak 《Surface science》2009,603(15):2271-2275
Ab initio calculations, based on pseudopotentials and density functional theory (DFT), have been performed to investigate the effect of hydrogenation on the electronic properties of P/Si(0 0 1)-(1 × 2) surface. In parallel with this, the electronic band structure of the hydrogenated and non-hydrogenated P/Si(0 0 1)-(1 × 2) surface have been calculated for half- and full-monolayer P. For the mixed Si-P dimer structure, we have identified two occupied and one unoccupied surface state, which correspond to 0.5 ML coverage of P. When this surface is terminated with H, we see that two occupied states completely disappeared and that one unoccupied state is shifted towards the conduction band. A similar calculations for the 1 ML coverage of P have been also carried out. It is seen that the unoccupied state C1 appeared in the P/Si(0 0 1)-(1 × 2) surface is passivated when this surface is terminated with the H atoms. To explain the nature of the surface states, we have also plotted the total and partial charge densities at the point of the Surface Brillouin Zone (SBZ).  相似文献   

16.
Density functional theory (DFT)/time dependent density functional theory (TDDFT) based calculations were performed for basis sets 6-31G for DFT and 6-31G (d), 6-31G (d,p) and 6-31+G (d,p) for TDDFT calculations on pure boron nitride nanoribbon (BNNR) B15N15H14 and metal decorated B15N14H14-X BNNRs, where X = Ni+, Fe+, Co, Cr+, Cu and Al. The metal doping ratio = 3.45% and the doping site (nitrogen atom), were fixed for all the BNNRs. Electronic properties dipole moment, binding energy and bandgap were determined. Absorption properties in the wavelength range (100–600 nm) were studied, and optical gaps, absorption wavelengths, oscillator strengths and dominant transitions were calculated. The effect of metal doping on the electronic and optical properties was investigated. Single metal doping shifts the electronic gap of pure BNNR from insulating to semiconducting nature. Red shift in the absorption wavelengths from ultraviolet to visible in all the BNNRs was noticed.  相似文献   

17.
Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.  相似文献   

18.
Plasma-enhanced chemical vapour deposition (PECVD) is an environmentally friendly process used to deposit a variety of nano-structured coatings for the protection or the surface modification of metallic artefacts like the SiO2-like films that have been successfully tested on ancient silver, bronze and iron artefacts as barriers against aggressive agents. This paper deals with the preliminary results of a wider investigation aimed to the development of eco-sustainable coatings for the protection of Cu and Ag-based artefacts of archaeological and historic interest. Diamond-like carbon (DLC) coatings have been deposited by PECVD in different experimental conditions, in a capacitively coupled asymmetric plasma reactor, placing the substrates either on electrically powered electrode (cathodic mode) or grounded electrode (anodic mode) with and without hydrogen addition in the gas mixture. The final goal is to develop a coating with good protective effectiveness against aggressive atmospheres and contemporarily with negligible effects on the aesthetic appearance of the artefacts. The evaluation of possible colour changes of the surface patinas, due to coating process, was performed by optical microscopy and colorimetric measurements. Furthermore, to evaluate the reversibility of the thin DLC layer, an etching treatment in oxygen plasma has been successfully carried out and optimized. The chemical-physical characterization of the deposited DLC coatings was performed by means of the combined use of micro-Raman and XPS spectroscopies. The results show that the DLC films obtained in the anodic mode, may be proposed as a viable alternative to polymeric coatings for the protection of metallic ancient objects.  相似文献   

19.
This paper deals with electron energy loss spectra (EELS) of hydrogen adsorbed at room temperature on Al and Al2O3 surfaces. It is shown that while hydrogen physisorption on Al2O3 is detected under H2 pressures in the 10?4 Torr range, no hydrogen physisorption is observed on clean Al under the same experimental conditions. These observations are consistent with calculations of the potential well depth of interaction between the H2 molecule and the aluminum and alumina surfaces.  相似文献   

20.
对称共价有机框架(COF)光催化剂通常存在电荷分离效率低和光激发态寿命短的问题. 通过密度泛函理论和含时密度泛函理论计算,本文发现了用一个或两个取代基(N或NH2)在具有代表性的对称共价有机框架(N0-COF)的连接单元内进行部分取代可得到具有电荷分离特征的共价有机框架(N1-COF、N2-COF、(NH2)1-N0-COF和(NH2)2-N0-COF). 此外,还发现N0-COF的最高占据晶体轨道和最低未占据晶体轨道的能级位置可通过取代远离或靠近真空能级,这取决于取代基的吸电子或给电子特性. 因此,本文提出了通过精心选择具有吸电子或给电子效应的取代基,并在对称共价有机框架的连接单元内进行部分取代,所获得的共价有机框架可具有高效的电荷分离以及驱动特定光催化反应的合适最高占据晶体轨道和最低未占据晶体轨道能级位置. 该规则可用于进一步提升许多具有对称性的共价有机框架的光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号