首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Microarc oxidation coatings on AM60B magnesium alloy were prepared in silicate and phosphate electrolytes. Structure, composition, mechanical property, tribological, and corrosion resistant characteristics of the coatings was studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and microhardness analyses, and by ball-on-disc friction and potentiodynamic corrosion testing. It is found that the coating produced from the silicate electrolyte is compact and uniform and is mainly composed of MgO and forsterite Mg2SiO4 phases, while the one formed in phosphate electrolyte is relatively porous and is mainly composed of MgO phase. The thick coating produced from a silicate electrolyte possesses a high hardness and provides a low wear rate (3.55 × 10−5 mm3/Nm) but a high friction coefficient against Si3N4 ball. A relatively low hardness and friction coefficient while a high wear rate (8.65 × 10−5 mm3/Nm) is recorded during the testing of the thick coating produced from a phosphate electrolyte. Both of these types of coatings provide effective protection for the corrosion resistance compared with the uncoated magnesium alloy. The coating prepared from the silicate electrolyte demonstrates better corrosion behavior due to the compacter microstructure.  相似文献   

2.
Yue Qi  Erkan Konca 《Surface science》2006,600(15):2955-2965
Experimentally, non-hydrogenated DLC coatings were tested against 319 Al alloy in the nitrogen, hydrogen, dry air (0% RH), and ambient air (40% RH) environments using a vacuum pin-on-disc tribometer. The average coefficient of friction (COF) and the material transfer changed dramatically depending on the test environment. Density functional theory (DFT) calculations were performed to investigate the interaction of diamond surface, to represent non-hydrogenated DLC, with N2, H2, and H2O molecules. These calculations suggested that hydrogen and water would dissociate and be chemically adsorbed at a diamond surface whereas the dissociation of nitrogen is very unlikely to happen. Therefore, the diamond/DLC surface is passivated by -H termination in hydrogen and by -OH termination in water vapor, but not passivated in nitrogen. The calculated work of separation for Al with non-passivated and reacted diamond surfaces indicated the same tendency of adhesive transfer as observed in the pin-on-disc tests. The calculated work of separation at the interfaces formed after material transfer has the same trend with the measured COF. Therefore, DFT calculations successfully explained the atmospheric dependency of the tribological behavior of non-hydrogenated DLC coatings.  相似文献   

3.
The nitrogen-doped diamond-like carbon (DLC) films were deposited on high speed steel (HSS) substrates in the direct current unbalanced magnetron sputtering system. Sulphurized layer was formed on the surface of DLC films by means of liquid sulfidation in the intermixture of urea and thiourea solution in order to improve the tribological properties of DLC films. The influence of sulfidation treatment on the structure and tribological properties of DLC films was investigated in this work. The structure and wear surface morphology of DLC films were analyzed by Raman spectroscopy, XPS and SEM, respectively. It reveals that the treated films are smooth and uniform; and sulfur atoms are bonded chemically. The treated films have broader distribution of Raman spectra in the range of 1000-1800 cm−1 and higher ID/IG ratio than the untreated films as a result of the appearance of the crystalline graphite structure after the sulfidation treatment. It is showed that the sp2 relative content increase in the treated films from the XPS measurement. The Raman results are consistent with the XPS results. The tribological properties of DLC films were investigated using a ball-on-disk rotating friction and wear tester under dry friction conditions. It is found that the sulfidation concentration plays an important part in the tribological properties of the treated DLC films. The results showed the treated films with low sulfidation concentration have a lower friction coefficient (0.1) than the treated films with high sulfidation concentration (0.26) and the untreated films (0.27) under the same friction testing conditions, which can be attributed to both the presence of sulfur-containing materials and the forming of the mechanical alloyed layer on the wear surface. Adding the dry nitrogen to the sliding surface in the testing system helps the friction coefficient of the treated films with low sulfidation concentration to decrease to 0.04 further in this work. On the basis of the experimental results, it is indicated that the liquid sulfidation technique, which is low-cost, non-polluting and convenience, would be an appropriate method for the surface treatment of DLC films.  相似文献   

4.
This paper discusses the seawater and saline solutions effects on the tribological behavior of diamond-like carbon (DLC) films. The adsorption of Fe on DLC surface is one of the mechanisms that is believed to be the cause of the decrease in dispersive component of the surface energy and increase of the ID/IG ratio leading to low friction coefficient and wear rate under corrosive environments. Tribological behaviors DLC films were experimentally evaluated under corrosive environments by using steel ball and DLC coated steel flat under rotational sliding conditions. The DLC films were prepared on 440 stainless steel disks by DC-pulsed PECVD using methane as a precursor gas. Two different set of tribological system was assembled, one when the liquids and the pairs were put inside of a stainless steel vessel and others inside of a PTFE. Every tribological test was performed under 10 N normal load120 mms? 1 of sliding speed. The friction coefficients were evaluated during 1000 cycles.  相似文献   

5.
This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.  相似文献   

6.
Nanocrystalline diamond films with the properties dependent on the composition of the gaseous medium have been prepared using the microwave plasma enhanced chemical vapor deposition (MPECVD) method. A nanocrystalline film formed in the Ar/CH4 plasma is characterized by a high crystallinity factor, a small grain size, a large fraction of sp 2-amorphous carbon, and, consequently, by an increase in the hardness and elastic modulus. The low value of the friction coefficient of this film is associated with the small grain size and large fraction of the sp 2-amorphous carbon boundary phase that ensures an easy sliding. The contact angle of the film is small (hydrophilic properties) in the case when the plasma consists of an Ar/CH4 mixture. It has been shown that the wetting properties of the films are provided by a thin layer of carboxyl and hydroxyl functional groups passivating the dangling bonds at the surface that are responsible for the boundary lubrication mechanism. It has also been found that the friction coefficient of these films is inversely proportional to the contact pressure dependent on the diameter of the sliding counterbody ball.  相似文献   

7.
Diamond-like carbon (DLC) and TiAlSiCN nanocomposite coatings were synthesized and annealed at different temperatures in a vacuum environment. The microstructure, hardness and tribological properties of as-deposited and annealed DLC-TiAlSiCN nanocomposite coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, nano-indentation and friction tests. The TEM results reveal that the as-deposited DLC-TiAlSiCN coating has a unique nanocomposite structure consisting of TiCN nanocrystals embedded in an amorphous matrix consisting of a-Si3N4, a-SiC, a-CN and DLC, and the structure changed little after annealing at 800 °C. However, XPS and Raman results show that an obvious graphitization of the DLC phase occurred during the annealing process and it worsened with annealing temperature. Because of the graphitization, the hardness of the DLC-TiAlSiCN coating after annealing at 800 °C decreased from 45 to 36 GPa. In addition, the DLC-TiAlSiCN coating after annealing at 800 °C has a similar friction coefficient to the as-deposited coating.  相似文献   

8.
In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 °C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.  相似文献   

9.
Diamond-like carbon (DLC) films were prepared on silicon substrates by liquid phase electrodeposition from a mixture of acetonitrile and deionized water. The deposition voltage was clearly reduced owing to the presence of deionized water in the electrolyte by changing the basic properties (dielectric constant and dipole moment) of the electrolyte. Raman spectra reveal that the ratio of sp3/sp2 in the DLC films is related to the concentration of acetonitrile. The surface roughness and grain morphology determined by atomic force microscopy are also influenced by the concentration of the acetonitrile. The UMT-2 universal micro-tribometer was used to test the friction properties of the DLC films obtained from electrolytes with different concentration. The results convey that the DLC film prepared from the electrolyte containing 10 vol.% acetonitrile has the better surface morphology and friction behavior comparing with the other. In addition the growth mechanism of the film was also discussed.  相似文献   

10.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

11.
杨莉  王正铎  张受业  杨丽珍  陈强 《中国物理 B》2009,18(12):5401-5405
To reduce the oxygen transmission rate through a polyethylene terephthalate (PET) bottle (an organic plastic) diamond-like carbon (DLC) coatings on the inner surface of the PET bottle were deposited by radio frequency plasma-enhanced chemical vapour deposition (RF-PECVD) technology with C2H2 as the source of carbon and Ar as the diluted gas. As the barrier layer to humidity and gas permeation, this paper analyses the DLC film structure, composition, morphology and barrier properties by Fourier transform infrared, atomic force microscopy, scanning electron microscopy and oxygen transmission rate in detail. From the spectrum, it is found that the DLC film mainly consists of sp3 bonds. The barrier property of the films is significantly relevant to the sp3 bond concentration in the coating, the film thickness and morphology. Additionally, it is found that DLC film deposited in an inductively coupled plasma enhanced capacitively coupled plasma source shows a compact, homogeneous and crack-free surface, which is beneficial for a good gas barrier property in PET bottles.  相似文献   

12.
During the last two decades, the industry (including scientists) has focused on diamond-like carbon (DLC) coating because of its wide range of application in various fields. This material has numerous applications in mechanical, electrical, tribological, biomedical, and optical fields. Severe friction and wear in some machine parts consumes high amount of energy, which makes the process energy inefficient. Thus, DLC coating can be an effective means to lower the friction and wear rate. Some important process variables that affect the tribological characteristics of DLC coating are adhesion promoter intermediate layer, substrate surface roughness, hydrogen incorporation or hydrogen non involvement, and coating deposition parameters (e.g., bias voltage, etching, current, precursor gas, time, and substrate temperature). Working condition of DLC-coated parts also affects the tribological characteristics, such as temperature, sliding speed and load, relative humidity, counter surface, and lubrication media (DLC additive interaction). Different types of lubricated oils and additives are used in engine parts to minimize friction and wear. DLC can be coated to the respective engine parts; however, DLC does not behave accordingly after coating because of lubricant oil and additive interaction with DLC. Some additive interacts positively and some behave negatively because of the tribochemical reactions between DLC coating and additives. Numerous conflicting views have been presented by several researchers regarding this coating additive interaction, resulting in unclear determination of true mechanism of such interaction. However, lubricant additive has been established to be more inert to DLC coating compared with uncoated metal surface because the additive is fabricated in such a way that it can react with metal surfaces. In this article, the tribological characteristics of different types of DLC coating in dry and lubricated conditions will be presented, and their behavior will be discussed in relation to working condition and processing parameters.  相似文献   

13.
TiO2-based coatings were formed on titanium alloy by plasma electrolytic oxidation (PEO) in an electrolyte containing nano-HA, calcium salts and phosphates. Bioactive surface was formed after chemical treatment (NaOH aqueous solution) of the PEO coating. The surface of the PEO coating was mainly composed of Ti, O, Ca and P showing anatase and rutile; while that of the chemically treated PEO (CT-PEO) coating mainly contains Ti, O, Ca and Na showing anatase, rutile and amorphous phase. And the chemically treated surface exhibits dissolution of P and introduction of Na during the chemical treatment process. The chemical treatment has no effect on the chemical states of Ca and Ti of the PEO coating. In addition, the surface constituents of the CT-PEO coating show a uniform distribution near its surface with increasing depth. When incubated in a simulated body fluid for 7 and 14 days, the PEO coating does not exhibit apatite-forming ability; however, apatite was successfully deposited on the CT-PEO coating after 7 days probably due to the formation of hydroxyl functionalized surface, enhancing the heterogeneous nucleation of apatite. The addition of nano-HA in the electrolyte has effects on the surface character and apatite-forming ability of the PEO coating; however, it has no obvious influence on those of the CT-PEO coatings.  相似文献   

14.
Superhydrophobic wood surfaces were fabricated from potassium methyl siliconate (PMS) through a convenient solution-immersion method. The reaction involves a hydrogen bond assembly and a polycondensation process. The silanol was formed by reacting PMS aqueous solution with CO2, which was assembled on the wood surface via hydrogen bonds with the wood surface -OH groups. The polymethylsilsesquioxane coating was obtained through the polycondensation reaction of the hydroxyl between wood and silanol. The morphology of products were characterized using a scanning electron microscope (SEM), the surface chemical composition was determined using energy dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry (TGA) and contact angle measurement. Analytical results revealed that rough protuberances uniformly covered the wood surface, thus transforming the wood surface from hydrophilic to superhydrophobic. The water contact angle of the superhydrophobic wood surface was about 153° and a sliding angle was 4.6°.  相似文献   

15.
The adsorption and reaction of water on clean and oxygen covered Ag(110) surfaces has been studied with high resolution electron energy loss (EELS), temperature programmed desorption (TPD), and X-ray photoelectron (XPS) spectroscopy. Non-dissociative adsorption of water was observed on both surfaces at 100 K. The vibrational spectra of these adsorbates at 100 K compared favorably to infrared absorption spectra of ice Ih. Both surfaces exhibited a desorption state at 170 K representative of multilayer H2O desorption. Desorption states due to hydrogen-bonded and non-hydrogen-bonded water molecules at 200 and 240 K, respectively, were observed from the surface predosed with oxygen. EEL spectra of the 240 K state showed features at 550 and 840 cm?1 which were assigned to restricted rotations of the adsorbed molecule. The reaction of adsorbed H2O with pre-adsorbed oxygen to produce adsorbed hydroxyl groups was observed by EELS in the temperature range 205 to 255 K. The adsorbed hydroxyl groups recombined at 320 K to yield both a TPD water peak at 320 K and adsorbed atomic oxygen. XPS results indicated that water reacted completely with adsorbed oxygen to form OH with no residual atomic oxygen. Solvation between hydrogen-bonded H2O molecules and hydroxyl groups is proposed to account for the results of this work and earlier work showing complete isotopic exchange between H216O(a) and 18O(a).  相似文献   

16.
The electrode reaction was examined on ceria coated YSZ by a platinum point electrode in H2-H2O atmosphere at 973 K- 1173 K. The thickness of the ceria coating layer was altered from 0 to 2.5 μm, fabricated by a laser ablation and by a vacuum vapor deposition method on YSZ single crystals. The electrode / electrolyte interface conductivity increased with 1/4 powers ofp(H2) andp(H2O) on both ceria coated and non-coated YSZ. The interface conductivity was significantly improved on a thicker ceria coating surface than 1 μm. The effective electrode reaction radius also increased in a thick ceria coating. The18O/16O exchange experiment at low oxygen partial pressure revealed that the oxygen surface exchange rate of ceria is not high compared with that of YSZ. It can be concluded that the bulk ionic conduction of ceria makes a more effective contribution to the electrode reaction than the surface catalytic activity in H2-H2O atmosphere. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

17.
Infrared and Raman spectroscopy were used to characterise synthetic mixed carbonate and vanadate hydrotalcites of formula Mg6Al2(OH)16(CO3)2−, (VO4)3−·4H2 O. The spectra were used to assess the molecular assembly of the cations and anions in the hydrotalcite structure. The spectra may be conveniently subdivided into spectral features based on (1) the carbonate anion (2) the hydroxyl units and (3) water units. Bands were assigned to the hydroxyl stretching vibrations of water. Three types of carbonate anions were identified: (1) carbonate hydrogen‐bonded to water in the interlayer, (2) carbonate hydrogen‐bonded to the hydrotalcite hydroxyl surface and (3) free carbonate anions. It is proposed that the water is highly structured in the hydrotalcite, as it is hydrogen‐bonded to both the carbonate and the hydroxyl surface. The spectra were used to assess the contamination of carbonate in an open reacting vessel in the synthesis of vanadate hydrotalcites of formula Mg6Al2(OH)16(CO3)2−, (VO4)3−·4H2 O. Bands have been assigned to vanadate anions in the infrared and Raman spectra associated with V O bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O2 and N2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE.In the N2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N2 plasma pre-treatment was more effective than the O2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N2 plasma pre-treatment showed good wear resistance, compared with that with O2 plasma pre-treatment.  相似文献   

19.
A. Spitzer  H. Lüth 《Surface science》1982,120(2):376-388
The water adsorption on clean and oxygen precovered Cu(110) surfaces is studied by means of UPS, LEED, work function measurements and ELS. At 90 K on the clean surface molecular water adsorption is indicated by UPS. The H2O molecules are bonded at the oxygen end and the H-O-H angle is increased as compared with the free molecule. In the temperature range between 90 and 300 K distorted H2O molecules and adsorbed hydroxyl species (OH) are detected, which are desorbed at room temperature. On an oxygen covered surface hydroxyl groups are formed by dissociation of adsorbed water molecules at a lower temperature than on the clean surface. Multilayers of condensed water are found below 140 K in both cases.  相似文献   

20.
The oxidation of methanol was studied on a Ag(110) single-crystal by temperature programmed reaction spectroscopy. The Ag(110) surface was preoxidized with oxygen-18, and deuterated methanol, CH3OD, was used to distinguish the hydroxyl hydrogen from the methyl hydrogens. Very little methanol chemisorbed on the oxygen-free Ag(110) surface, and the ability of the silver surface to dissociatively chemisorb methanol was greatly enhanced by surface oxygen. CH3OD was selectively oxidized upon adsorption at 180 K to adsorbed CH3O and D218O, and at high coverages the D218O was displaced from the Ag(110) surface. The methoxide species was the most abundant surface intermediate and decomposed via reaction channels at 250, 300 and 340 K to H2CO and hydrogen. Adsorbed H2CO also reacted with adsorbed CH3O to form H2COOCH3which subsequently yielded HCOOCH3 and hydrogen. The first-order rate constant for the dehydrogenation of D2COOCH3 to DCOOCH3 and deuterium was found to be (2.4 ± 2.0) × 1011 exp(?14.0 ± 0.5 kcalmole · RT)sec?1. This reaction is analogous to alkoxide transfer from metal alkoxides to aldehydes in the liquid phase. Excess surface oxygen atoms on the silver substrate resulted in the further oxidation of adsorbed H2CO to carbon dioxide and water. The oxidation of methanol on Ag(110) is compared to the previous study on Cu(110).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号