首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
Sm3+ doped Sb2Se3 nanorods were synthesized by the co-reduction method at 180 °C and pH=12 for 48 h. Powder XRD patterns indicate that the SmxSb2−xSe3 crystals (x=0.00-0.05) are isostructural with Sb2Se3. The cell parameters increase for Sm3+ upon increasing the dopant content (x). SEM images show that doping of Sm3+ ions in the lattice of Sb2Se3 results in nanorods. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sm0.05Sb1.95Se3 is oriented in the [1 0 −1] growth direction. UV-vis absorption reveals mainly electronic transitions of the Sm3+ ions in doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show other emission bands originating from f-f transitions of the Sm3+ ions. The electrical conductance of Sm-doped Sb2Se3 is higher than undoped Sb2Se3 and increase with temperature.  相似文献   

2.
TiO2/Fe2O3 core-shell nanocomposition film has been fabricated via two-step method. TiO2 nanorod arrays are synthesized by a facile hydrothermal method, and followed by Fe2O3 nanoparticles deposited on TiO2 nanorod arrays through an ordinary chemical bath deposition. The phase structures, morphologies, particle size, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and ultraviolet-visible (UV-vis) spectrophotometer. The results confirm that Fe2O3 nanoparticles of mean size ca. 10 nm coated on the surface of TiO2 NRs. After depositing Fe2O3, UV-vis absorption property is induces the shift to the visible-light range, the annealing temperature of 600 °C is the best condition for UV-vis absorption property of TiO2/Fe2O3 nanocomposite film, and increasing Fe content, optical activity are enhanced one by one. The photoelectrochemical (PEC) performances of the as-prepared composite nanorods are determined by measuring the photo-generated currents under illumination of UV-vis light. The TiO2 NRs modified by Fe2O3 show the photocurrent value of 1.36 mA/cm2 at 0 V vs Ag/AgCl, which is higher than those of unmodified TiO2 NRs.  相似文献   

3.
The interaction of Eu3+ with Sb3+ ions during the room temperature synthesis of luminescent Sb2O3 nanorods is investigated using luminescence and vibrational spectroscopic techniques. Our results demonstrate that well crystalline, oriented Sb2O3 nanorods having length of around 3-4 μm, a width of around 100-200 nm and luminescence at around 390 nm can be synthesized at room temperature. Incorporation of Eu3+ in these nanorods has been attempted and it is found that Eu3+ ions do not have any interaction with nanorods and their orientation. Detailed Eu3+ luminescence and XRD studies confirmed that a part of Sb3+ ions reacts with Eu3+ ions in the presence of hydroxyl ions (present in the medium) to form an amorphous antimony europium hydroxide compound. The amorphous compound on heating at high temperatures leads to its decomposition, giving hydrated Sb(V) oxides and Eu2O3 as major phases.  相似文献   

4.
The mechanisms related to the initial stages of the nucleation and growth of antimony selenide (Sb2Se3) semiconductor compounds onto the indium-doped tin oxides (ITO) coated glass surface have been investigated using chronoamperometry (CA) technique. The fabrication was conducted from nitric acid bath containing both Sb3+ and SeO2 species at ambient conditions. No underpotential deposition (UPD) of antimony and selenium onto ITO substrate was observed in the investigated systems indicating a weak precursor-substrate interaction. Deposition of antimony and selenium onto ITO substrate occurred with large overvoltage through 3D nucleation and growth mechanism followed by diffusion limited growth. FE-SEM and XRD results show that orthorhombic phase Sb2Se3 particles with their size between 90 and 125 nm were obtained and the atomic ratio for antimony and selenium was 2:2.63 according to the EDX results.  相似文献   

5.
Nb2O5 nanorod array films were synthesized by a facile hydrothermal process using niobium metal foil and NH4F as precursors. The Nb2O5 nanorods stand on the niobium metal foil substrate and are less than 100 nm in diameter and about 1 μm in length. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) characterizations indicate that these nanorods have orthorhombic structure and grew longitudinally along 〈0 0 1〉 direction. The nanorod growth mechanism was discussed. Thermal annealing at a temperature below 500 °C did not change the microstructure of nanorods but improve the crystallinity. The Nb2O5 nanorod array films have been tested as cathode material for lithium battery, which showed a good specific capacity up to 380 mAh g−1 even after 50 charge/discharge cycles.  相似文献   

6.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

7.
The photoemission energy distribution curves (EDC's) of crystalline and amorphous Sb2Se3 were measured in the photon energy range hv=7 to 20 eV using polarized radiation from a synchroton storage ring. The EDC's show that the six electrons per Sb2Se3 molecule, attributed primarily to the selenium p-pairs, are clearly separated from the remaining part of the valence band of crystalline Sb2Se3. The optical transitions from these states occur with matrix elements strongly dependent on the orientation of the electrical vector of the polarized radiation as a result of crystal field effects. Model densities of states are constructed for both crystalline and amorphous Sb2Se3.  相似文献   

8.
Bismuth sulfide (Bi2S3) and antimony sulfide (Sb2S3) nanorods were synthesized by hydrothermal method. The products were characterized by UV-vis spectrophotometer, X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Bi2S3 and Sb2S3 nanorods were measured by Z-scan technique to investigate the third-order nonlinear optical (NLO) properties. The result of NLO measurements shows that the Bi2S3 and Sb2S3 nanorods have the behaviors of the third-order NLO properties of both NLO absorption and NLO refraction with self-focusing effects. The third-order NLO coefficient χ(3) of the Bi2S3 and Sb2S3 nanorods are 6.25×10−11 esu and 4.55×10−11 esu, respectively. The Sb2S3 and Bi2S3 nanorods with large third-order NLO coefficient are promising materials for applications in optical devices.  相似文献   

9.
The effect of heat treatment on the optical and electrical properties of Ge15Sb10Se75 and Ge25Sb10Se65 thin films in the range of annealing temperature 373-723 K has been investigated. Analysis of the optical absorption data indicates that Tauc's relation for the allowed non-direct transition successfully describes the optical processes in these films. The optical band gap (Egopt.) as well as the activation energy for the electrical conduction (ΔE) increase with the increase of annealing temperature (Ta) up to the glass transition temperature (Tg). Then a remarkable decrease in both the Egopt. and ΔE values occurred with a further increase of the annealing temperature (Ta>Tg). The obtained results were explained in terms of the Mott and Davis model for amorphous materials and amorphous to crystalline structure transformations. Furthermore, the deduced value of Egopt. for the Ge25Sb10Se65 thin film is higher than that observed for the Ge15Sb10Se75 thin film. This behavior was discussed on the basis of the chemical ordered network model (CONM) and the average value for the overall mean bond energy 〈E〉 of the amorphous system GexSb10Se90−x with x=15 and 25 at%. The annealing process at Ta>Tg results in the formation of some crystalline phases GeSe, GeSe2 and Sb2Se3 as revealed in XRD patterns, which confirms our discussion of the obtained results.  相似文献   

10.
ZnIn2Se4 is of polycrystalline structure in as synthesized condition. It transforms to nanocrystallite structure of ZnIn2Se4 film upon thermal evaporation. Annealing temperatures influenced crystallite size, dislocation density and internal strain. The hot probe test showed that ZnIn2Se4 thin films are n-type semiconductor. The dark electrical resistivity versus reciprocal temperature for planar structure of Au/ZnIn2Se4/Au showed existence of two operating conduction mechanisms depending on temperature. At temperatures >365 K, intrinsic conduction operates with activation energy of 0.837 eV. At temperatures <365 K, extrinsic conduction takes place with activation energy of 0.18 eV. The operating conduction mechanism in extrinsic region is variable range hopping. The parameters such as density of states at Fermi level, hopping distance and average hopping energy have been determined and it was found that they depend on film thickness. The dark current–voltage characteristics of Au/n-ZnIn2Se4/p-Si/Al diode at different temperatures ranging from 293–353 K have been investigated. Results showed rectification behavior. At forward bias potential <0.2 V, thermionic emission of electrons from ZnIn2Se4 film over a potential barrier of 0.28 V takes place. At forward bias potential >0.2 V, single trap space charge limited current is operating. The trap concentration and trap energy level have been determined as 3.12×1019 cm−3 and 0.24 eV, respectively.  相似文献   

11.
采用磁控三靶(Si,Sb及Te)共溅射法制备了Si掺杂Sb2Te3薄膜,作为对比,制备了Ge2Sb2Te5和Sb2Te3薄膜,并且采用微加工工艺制备了单元尺寸为10μm×10μm的存储器件原型来研究器件性能.研究表明,Si掺杂提高了Sb2Te3薄膜的晶化温度以及薄膜的晶态和非晶态电阻率,使得其非晶态与晶态电阻率之比达到106,提高了器件的电阻开/关比;同Ge2Sb2Te5薄膜相比,16at% Si掺杂Sb2Te3薄膜具有较低的熔点和更高的晶态电阻率,这有利于降低器件的RESET电流.研究还表明,采用16at% Si掺杂Sb2Te3薄膜作为存储介质的存储器器件原型具有记忆开关特性,可以在脉高3V、脉宽500ns的电脉冲下实现SET操作,在脉高4V、脉宽20ns的电脉冲下实现RESET操作,并能实现反复写/擦,而采用Ge2Sb2Te5薄膜的相同结构的器件不能实现RESET操作. 关键词: 相变存储器 硫系化合物 2Te3薄膜')" href="#">Si掺杂Sb2Te3薄膜 SET/RESET转变  相似文献   

12.
刘波  阮昊  干福熹 《中国物理》2002,11(3):293-297
In this paper, the crystallization behaviour of amorphous Ge2Sb2Te5 thin films is investigated using differential scanning calorimetry), x-ray diffraction and optical transmissivity measurements. It is indicated that only the amorphous phase to face-centred-cubic phase transformation occurs during laser annealing of the normal phase-change structure, which is a benefit for raising the phase-change optical disk's carrier-to-noise ratio (CNR). For amorphous Ge2Sb2Te5 thin films, the crystallization temperature is about 200℃ and the melting temperature is 546.87℃. The activation energy for the crystallization, Ea, is 2.25eV. The crystallization dynamics for Ge2Sb2Te5 thin films obeys the law of nucleation and growth reaction. The sputtered Ge2Sb2Te5 films were initialized by an initializer unit. The initialization conditions have a great effect on the reflectivity contrast of the Ge2Sb2Te5 phase-change optical disk.  相似文献   

13.
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.  相似文献   

14.
刘峰  秦晓英  刘冕 《中国物理 B》2009,18(10):4386-4392
Structural phase transitions of Zn4Sb3 and its substitutional compounds (Zn0.98M0.02)4Sb3 (M = Al, Ga and In) are investigated by electrical transport measurement and differential scanning calorimetry below room temperature. The results indicate that both β→α and α→α′ phase transitions of Zn4Sb3 are reversible and exothermic processes, which may be explained as that both the transitions originate from the ordering of the disordered interstitial Zn and vacancies in regular sizes. The derived activation energies of β→α and α→α′ phase transition processes for Zn4Sb3 are E1 = 3.9 eV and E2 = 4.1 eV, respectively. Although no remarkable influence on activation energy E2 is observed after Al doping, Al substitution for Zn causes E1 to increase to 4.6 eV, implying its suppression of βα transition to a great extent. Moreover, it is found that both βα and αα′ transitions are completely prohibited by substitution of either In or Ga for Zn in Zn4Sb3. The underlying mechanisms for these phenomena are discussed.  相似文献   

15.
Al doped Sb2Te3 material was proposed to improve the performance of phase-change memory. Crystallization temperature, activation energy, and electrical resistance of the Al doped Sb2Te3 films increase markedly with the increasing of Al concentration. The additional Al-Sb and Al-Te bonds enhance the amorphous thermal stability of the material. Al0.69Sb2Te3 material has a better data retention (10 years at 110 °C) than that of Ge2Sb2Te5 material (10 years at 87 °C). With a 100 ns width voltage pulse, SET and RESET voltages of 1.3 and 3.3 V are achieved for the Al0.69Sb2Te3 based device.  相似文献   

16.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

17.
New LnxSb2−xSe3 (Ln: Yb3+, Er3) based nanomaterials were synthesized by a co-reduction method. Powder XRD patterns indicate that the LnxSb2−xSe3crystals (Ln=Yb3+, Er3+, x=0.00-0.12) are isostructural with Sb2Se3. The cell parameters b and c decrease for Ln=Er3+ and Yb3+ upon increasing the dopant content (x), while a increases. SEM images show that doping of the lanthanide ions in the lattice of Sb2Se3 generally results in nanoflowers. UV-vis absorption and emission spectroscopy reveals mainly electronic transitions of the Ln3+ ions in case of Yb3+ doped nanomaterials. Emission spectra of doped materials, in addition to the characteristic red emission peaks of Sb2Se3, show additional emission bands centered at 955 nm, originating from the 2F7/22F5/2 transition (f-f transitions) of the Yb3+ ions. DSC curves indicate that Sb2Se3 has the highest thermal stability. The temperature dependence of the electrical resistivity of doped-Sb2Se3 with Yb3+ and Er3+ was studied.  相似文献   

18.
Highly ordered arrays of Cu2ZnSnSe4 nanotubes have been successfully synthesized on fluorine-doped tin oxide glass substrate using ZnO nanorod arrays as sacrificial templates. The structure, morphology and optical properties of the Cu2ZnSnSe4 arrays were characterized by X-ray diffraction, Raman spectrometry, field-emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and UV–Vis absorption spectroscopy. The diameter and length of the Cu2ZnSnSe4 nanotubes can be adjusted by tuning the diameter and length of the ZnO nanorods. In addition, the effect of the length on the performance of the photoelectrochemical cells was also investigated.  相似文献   

19.
Branched rutile TiO2 nanorod arrays were directly synthesized on the F-doped tin oxide (FTO) substrate through a two-step hydrothermal treatment by a seeding method with TiO2-nanorods as seeds. The samples were characterized respectively by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and field-emission scanning electron microscopy (FESEM). Results showed that TiO2 nanorods with nanobranches (TiO2-NB) grew vertically on the FTO substrate. XRD and HRTEM results confirmed that the TiO2-NB arrays were single-crystalline rutile. The optical properties of the samples were studied with a UV-vis spectrometer. The photocatalytic activity of the TiO2-NB film is better than that of P25 particulate film. Direct electrical pathway and improved light-harvesting efficiency were crucial for the superior photocatalytic activity of the TiO2-NB arrays.  相似文献   

20.
We report on the single crystal growth and thermoelectric and magnetic properties of Mn-doped Bi2Se3 and Sb2Se3 single crystals prepared by the temperature gradient solidification method. The composition and crystal structure were determined using electron probe microanalysis and θ–2θ powder X-ray diffraction studies, respectively. The lattice constants of several percent Mn-doped Bi2Se3 and Sb2Se3 were slightly smaller than those of the undoped sample due to the smaller Mn atomic radius (1.40 Å) than those of Bi (1.60 Å) and Sb (1.45 Å). Mn-doped Bi2Se3 and Sb2Se3 showed spin-glass and paramagnetic properties, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号