首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Investigation of the constituents of the fruits of Morus alba LINNE (Moraceae) afforded five new nortropane alkaloids (1-5) along with nor-psi-tropine (6) and six new amino acids, morusimic acids A-F (7-12). The structures of the new compounds were determined to be 2alpha,3beta-dihydroxynortropane (1), 2beta,3beta-dihydroxynortropane (2), 2alpha,3beta,6exo-trihydroxynortropane (3), 2alpha,3beta,4alpha-rihydroxynortropane (4), 3beta,6exo-dihydroxynortropane (5), (3R)-3-hydroxy-12-[(1S,4S)-4-[(1S)-1-hydroxyethyl]-pyrrolidin-1-yll-dodecanoic acid-3-O-beta-D-glucopyranoside (7), (3R)-3-hydroxy-12-[(1S,4S)-4-[(1S)-1-hydroxyethyl]-pyrrolidin-1-yll-dodecanoic acid (8), (3R)-3-hydroxy-12-1(1R,4R,5S)-4-hydroxy-5-methyl-piperidin-1-yll-dodecanoic acid-3-O-beta-D-glucopyranoside (9), (3R)-3-hydroxy-12-[(1R,4R,5S)-4-hydroxy-5-methyl-piperidin-1-yll-dodecanoic acid (10), (3R)-3-hydroxy-12-[(1R,4R,5S)-4-hydroxy-5-hydroxymethyl-piperidin-1-yl]-dodecanoic acid-3-O-beta-D-glucopyranoside (11), and (3R)-3-hydroxy-12-[(1R,4S,5S)-4-hydroxy-5-methyl-piperidin-1-yl]-dodecanoic acid (12) on the basis of spectral and chemical data.  相似文献   

2.
A series of α-aminopyridines in the form of (2,6-C(6)H(3)N)(R(1))(CHR(2)NR(3)R(4)) (R(1) = R(2) = H R(3) = H R(4) = (i)Pr (L1a), R(4) = (t)Bu (L1b), R(4) = Ph (L1c), R(4) = 2,6-Me(2)C(6)H(3) (L1d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L1e), R(1) = R(2) = H R(3) = R(4) = Et (L1f), R(1) = H R(2) = Me R(3) = H R(4) = (i)Pr (L2a), R(4) = Ph (L2c), R(4) = 2,6-Me(2)C(6)H(3) (L2d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L2e), R(1) = Me R(2) = H R(3) = H R(4) = 2,6-(i)Pr(2)C(6)H(3) (L3e)) and β-aminopyridines in the form of (2-C(6)H(4)N)(CH(2)CH(2)NR(1)R(2)) (R(1) = H R(2) = (i)Pr (4a), R(2) = (t)Bu (L4b), R(1) = R(2) = Et (L4f)) have been prepared. Their corresponding halonickel complexes 1a-4f are synthesized by ligand substitution from (DME)NiBr(2) and the molecular structures are characterized. Four types of coordination modes include four-coordinate mononuclear species with one ligand, five-coordinate mononuclear species with two ligands, five-coordinate dinuclear species with two ligands, and a six-coordinate polymeric framework were determined by X-ray crystallography. Using methylaluminoxanes (MAO) as the activator, the nickel complexes can catalyze ethylene polymerization under moderate pressure and ambient temperature. The activity reaches 10(5) g PE mol(-1) Ni h. The PE products with high branching and high crystallinity have M(n) ~ 10(3) with PDI < 2.  相似文献   

3.
姜科姜黄属是一个重要的药用植物群其根茎和块根分别称为姜黄和郁金。中医中药认为, 郁金具有行气, 纠瘀和通经等功效。动物药理试验表明, 姜科植物温郁金具有抗生育活性, 而其挥发油主要含有姜烯、α-姜黄烯和异-α-姜黄烯等倍半萜类化合物。本文合成了温郁金挥发油的另一个成分异-α-姜黄烯和其衍生物2-甲基-6-对甲苯基-2-庚醇、脱氢异-α-姜黄烯和2-甲基-6-对甲苯基-5-庚烯-2-醇。它们的化学结构得到确证。  相似文献   

4.
四氯化钛-锌粉还原环化δ-酮腈是合成环戊酮的一种简便方法。在同样条件下, 由4-甲基-4-乙酰基庚二腈得到1,5-二甲基双环-[3.3.0]-2,8-辛二酮。  相似文献   

5.
Six new alkaloids, broussonetines W, X, M1, U1, J3, and J2 (1-6) were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) as minor constituents. They were formulated as (2R,3R,4R,5R)-2-hydroxy-methyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyllpyrrolidine (1), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-17-(cyclohexy-2-on-1(6)-enyl)heptyl]pyrrolidine-4-O-beta-D-glucopyranoside (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(9R)-9,13-dihydroxytridecyl]- pyrrolidine (3), (2S,3S,4S)-2-hydroxymethyl-3,4-dihydroxy-5-(10-oxo-13-hydroxytridecyl)-5- pyrroline (4), (2R)-2-[(IS,2S)-1,2-dihydroxy-8-1(2R,3R,4R,5R)-5-(2-hydroxymethyl-3,4-dihydroxy-1-acetylpyrrolidinyl)loctyl]piperidine (5), (2R)-2-[(1S,2S)-1,2-dihydroxy-8-[(2R,3R, 4R,5R)-5-(2-hydroxymethy]-3,4-dihydroxypyrrolidinyl)]octyl]piperidine (6).  相似文献   

6.
One-step reactions of the appropriate N-alkyl-, N-cycloalkyl-, and N-aryl-substituted alpha-diimines with PI3 afforded >80% yields of the triiodide salts of the following N-heterocyclic phosphenium ions, [(R1NC(R2)C(R2)NR1)P]+: 3 (R1 = t-Bu; R2 = H); 4 (R1 = 2,6-i-Pr2C6H3; R2 = H), 5 (R1 = Mes; R2 = H), 6 (R1 = 2,6-i-Pr2C6H3; R2 = H), and 7 (R1 = cyclohexyl; R2 = H). Treatment of 3 and 6 with NaB(C6H5)4 resulted in virtually quantitative yields of the corresponding [B(C6H5)4]- salts 8 and 9, respectively. The X-ray crystal structures of 3 and 5-9 were determined.  相似文献   

7.
Several titanium isopropoxide complexes [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-p-R(3)-C(6)H(4))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = H (1b); R(1) = R(2) = t-Bu, R(3) = H, (2b); R(1) = R(2) = Cl, R(3) = H, (3b), R(1) = t-Bu, R(2) = Me, R(3) = Cl (4b); R(1) = R(2) = t-Bu, R(3) = Cl, (5b); R(1) = R(2) = R(3) = Cl, (6b)] supported over sterically demanding aryloxy based [N(2)O(2)]H(2) ligands have been designed as precatalysts for the ethylene polymerization. Specifically, the 1b-6b complexes, when treated with methylaluminoxane (MAO) under 88 ± 0.5 psi of ethylene at 30 °C for 3 h, produced polyethylene polymers of high molecular weight (M(w) = ca. 7.2-8.3 × 10(5) g mol(-1)) having broad molecular weight distribution (PDI = ca. 13.1-14.6). The 1b-6b complexes were conveniently synthesized from the direct reaction of the [N(2)O(2)]H(2) ligands, 1a-6a, with Ti(O(i)Pr)(4) in 69-86% yield.  相似文献   

8.
A Fourier transform ion cyclotron resonance spectrometry (FT-ICR) study of the gas-phase protonation of ammonia-borane and sixteen amine/boranes R(1)R(2)R(3)N-BH(3) (including six compounds synthesized for the first time) has shown that, without exception, the protonation of amine/boranes leads to the formation of dihydrogen. The structural effects on the experimental energetic thresholds of this reaction were determined experimentally. The most likely intermediate and the observed final species (besides H(2)) are R(1)R(2)R(3)N-BH(4)(+) and R(1)R(2)R(3)N-BH(2)(+), respectively. Isotopic substitution allowed the reaction mechanism to be ascertained. Computational analyses ([MP2/6-311+G(d,p)] level) of the thermodynamic stabilities of the R(1)R(2)R(3)N-BH(3) adducts, the acidities of the proton sources required for dihydrogen formation, and the structural effects on these processes were performed. It was further found that the family of R(1)R(2)R(3)N-BH(4)(+) ions is characterized by a three-center, two-electron bond between B and a loosely bound H(2) molecule. Unexpected features of some R(1)R(2)R(3)N-BH(4)(+) ions were found. This information allowed the properties of amine/boranes most suitable for dihydrogen generation and storage to be determined.  相似文献   

9.
Four new pyrrolidine alkaloids, broussonetines R, S, T, and V and a new pyrroline alkaloid, broussonetine U were isolated from the branches of Broussonetia kazinoki SIEB. (Moraceae) in low yield. Broussonetines R, S and T were formulated as (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R)-1-hydroxy-3-[6-(4-hydroxybutyl)-cyclohexy-2-on-1(6)-enyllpropyl] pyrrolidine (1), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,10S)-1,10,13-trihydroxytridecyl] pyrrolidine (2), (2R,3R,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(1R,5S)-1,5, 13-trihydroxy-10-oxo-tridecyl] pyrrolidine (3). And broussonetines U and V were proposed to be (2S,3S,4S)-2-hydroxymethyl-3, 4-dihydroxy-5-(9-oxo-13-hydroxytridecyl)-5-pyrroline (4), (2R,3S,4R,5R)-2-hydroxymethyl-3,4-dihydroxy-5-[(E)-9-oxo-13-hydroxy-3-tridecenyl] pyrrolidine (5), respectively, by spectroscopic and chemical methods.  相似文献   

10.
An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.  相似文献   

11.
番石榴酸(Piscidicacid) 8 是从Piscidacrgthrina中分离得到的一种水溶性化合物,1948年W.Bridge等证明其结构为对羟基苄基酒石酸,1971年T.Yoshihara等确定其绝对构型为(2R,3S),1981年发现它具有明显的药理作用。  相似文献   

12.
With K-band EPR (Electron Paramagnetic Resonance), ENDOR (Electron-Nuclear DOuble Resonance), and EIE (ENDOR-induced EPR) techniques, three free radicals (RI-RIII) in L-lysine hydrochloride dihydrate single crystals X-irradiated at 298 K were detected at 298 K, and six radicals (R1, R1', R2-R5) were detected if the temperature was lowered to 66 K from 298 K. R1 and RI dominated the central portion of the EPR at 66 and 298 K, respectively, and were identified as main chain deamination radicals, (-)OOC?H(CH(2))(4)(NH(3))(+). R1' was identified as a main chain deamination radical with the different configuration from R1 at 66 K, and it probably formed during cooling the temperature from 298 to 66 K. The configurations of R1, R1', and RI were analyzed with their coupling tensors. R2 and R3 each contain one α- and four β-proton couplings and have very similar EIEs at three crystallographic axes. The two-layer ONIOM calculations (at B3LYP/6-31G(d,p):PM3) support that R2 and R3 are from different radicals: dehydrogenation at C4, (-)OOCCH(NH(3))(+)CH(2)?H(CH(2))(2)(NH(3))(+), and dehydrogenation at C5, (-)OOCCH(NH(3))(+)(CH(2))(2)?HCH(2)(NH(3))(+), respectively. The comparisons of the coupling tensors indicated that R2 (66 K) is the same radical as RII (298 K), and R3 is the same as RIII. Thus, RII and RIII also are the radicals of C4 and C5 dehydrogenation. R4 and R5 are minority radicals and were observed only when temperature was lowered to 66 K. R4 and R5 were only tentatively assigned as the side chain deamination radical, (-)OOCCH (NH(3))(+)(CH(2))(3)?H(2), and the radical dehydrogenation at C3, (-)OOCCH(NH(3))(+)?H(CH(2))(3)(NH(3))(+), respectively, although the evidence was indirect. From simulation of the EPR (B//a, 66 K), the concentrations of R1, R1', and R2-R5 were estimated as: R1, 50%; R1', 11%; R2, 14%; R3, 16%; R4, 6%; R5, 3%.  相似文献   

13.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

14.
Infrared spectroscopy studies of six beta-alkoxyvinyl methyl ketones, with common structure R(1)O-CR(2)CH-COR(3), where R(1)=R(3)=CH(3), R(2)=H (1); R(1)=C(2)H(5), R(2)=H (2); R(3)=CF(3); R(1)=R(2)=CH(3), R(3)=CF(3) (3); R(1)=C(2)H(5), R(2)=C(6)H(5), R(3)=CF(3) (4); R(1)=C(2)H(5), R(2)=4-O(2)NC(6)H(4), R(3)=CF(3) (5); R(1)=C(2)H(5), R(2)=C(CH(3))(3), R(3)=CF(3) (6) in 11 pure organic solvents of different polarity were undertaken to investigate the solute-solvent interactions and to correlate solvent properties by means of linear solvation energy relationships (LSER) with the carbonyl and vinyl stretching vibrations of existing stereoisomeric forms. It was shown that contrary to simple carbonyl-containing compounds where solvent HBD acidity (alpha) has the largest influence on the nu (CO) band shift to lower wavenumbers, the dipolarity/polarizability (pi) term plays the main role in the interactions of conjugated enones with solvent molecules leading to the nu (CO) and nu (CC) bathochromic band shifts. The trifluoroacetyl group possesses a reduced ability to form hydrogen bonds with solvents. For the nu (CC) band of non-fluorinated enone 1 solvent HBD acidity (alpha) and solvent HBA basicity term (beta) play a perceptible role, whereas for 2 these terms are not significant. beta-Substituents in fluorinated enones such as R(2)=H, C(6)H(5), and C(CH(3))(3) assist in the intermolecular hydrogen bond formation of the carbonyl moiety with HBD solvents, while beta-substituents such as CH(3) and 4-NO(2)C(6)H(4) prevent the CO group to form the H-bonds with HBD solvents (the solvent HBD acidity term (alpha) is not significant). The comparison of four conformers of the enone 1 reveals that (EEE) form is the most polarizable conformer; the influences of the solvent dipolarity/polarizability (pi) and solvent HBD acidity (alpha) term on the bathochromic nu (CO) band shift are opposite to one another.  相似文献   

15.
报道了在以K~2CO~2为固体碱的固-液相转移催化条件下,用醛亚胺与亲电的 烯烃和醛类化合物进行Michael加成,羰基加成反应,合成了一系列醛亚胺亲核加成产物.并通过水解羰基加成产物制备了一系列丝氨酸衍生物.该法简便,温和,反应时间短,产率高,是合成具有取代基的甘氨酸,丙氨酸和丝氨酸及其酯的一种有用方法.  相似文献   

16.
穆红亮  李彦国  李悦生 《应用化学》2012,29(12):1381-1388
以酚膦化合物为双齿配体,合成与表征了一系列单组分中性镍烯烃聚合催化剂。 研究表明,酚膦配体结构显著影响中性镍的催化性能,酚氧邻位无取代基的(2-PPh2-C6H4O)Ni(Me)(Py)(3a)活性较低,向酚氧邻位引入叔丁基或苯基等位阻基团可大幅度提高(2-PPh2-C6H3(R)O)Ni(Me)(Py)(3b~3d)的催化效率,最高催化活性可达4.46×106 g PE/(mol(Ni)·h)。 同时,聚乙烯的分子量也可以通过取代基效应进行适度调控,使用酚氧邻位带有苯基或蒽基的催化剂(3c~3d)可获得较高分子量的聚乙烯。 用供电子叔丁基替代二苯膦的一个苯环可提高催化活性中心镍原子的电子云密度,使辅助配体吡啶更容易离去,从而可在较低温度下引发乙烯聚合反应。 此外,这类酚膦中性镍催化剂对极性基团具有较强的耐受性,可催化乙烯与极性5-降冰片烯-2-乙酸酯的共聚反应。  相似文献   

17.
In the presence of Co(PPh3)2I2, PPh3, water, and zinc powder, the reaction of alkynes (R1CCR2: R1 = Ph, R2 = Me (1a); R1 = Ph, R2 = Ph (1b); R1 = Et, R2 = Et (1c); R1 = Ph, R2 = (CH2)3OH (1d); R1 = CO2Et, R2 = Ph (1e); R1 = CO2Me, R2 = (CH2)4CH3 (1f); R1 = CO2Et, R2 = SiMe3 (1g)) with alkenes having an electron-withdrawing substituent (CH2=CHR: R = CO2Bu (2a), CN (2b), SO2Ph (2c) and CO2Me (2d)) proceeded smoothly in acetonitrile to give the corresponding reductive coupling products (R1HC=CR2CH2CH2R, 3a-j) in fair to excellent yields. This reductive coupling is highly regio- and stereoselective; only one isomer was observed for each reaction. The results of an isotope-labeling experiment using D2O (99%) to replace normal water for the reductive coupling of vinyl phenyl sulfone 2c with alkyne 1a revealed that the product is E-Ph(D)C=CMeCH2CH(D)SO2Ph deuterated at the olefinic proton and one of the protons of the alpha-methylene group in 84 and 96%, respectively. Possible mechanisms for this highly regio- and stereoselective ene-yne catalytic reaction are proposed.  相似文献   

18.
The previously unknown reactions between phthalonitriles, 1,2-(CN)2(C6)R1R2R3R4 1 (1 a, R1=R2=R3=R4=H; 1 b, R1=R2=R4=H, R3=CH3; 1 c, R1=R4=H, R2=R3=Cl; 1 d, R1=R2=R3=R4=Cl; 1 e, R1=R2=R3=R4=F), and a cyclic nitrone, -O+N==CHCH2CH2CMe2 2, proceed under heating in a sealed tube to give phthalimides 3, 2-oxadiazolyl-benzonitriles 4 or ortho-bis(oxadiazolyl)tetrafluorobenzene 4 e'. In the presence of palladium(II) chloride, phthalonitriles 1 react with 2 at room temperature, to give bis(pyrrolidin-2-ylidene)phthalamide PdII complexes 5 via metal-promoted rupture of the N--O bond of the oxadiazoline ring. The ketoimine ligands thus generated can be liberated from the metal by displacement with a diphosphine. Although the first [2+3] cycloaddition of 2 to 1 can occur in the absence of the metal to give the mono-cycloadducts 4, the second [2+3] coupling at the still-unreacted cyano group requires its activation by coordination to PdII, affording complexes 6 containing two ligated oxadiazolyl-benzonitriles. These ligands undergo either i) further cycloaddition with 2 to afford ultimately (upon rearrangement) the bis(pyrrolidinylidene)phthalamide complexes 5 or ii) N--O bond cleavage in the oxadiazoline ring with intramolecular attack of the imine nitrogen on the cyano carbon and bridging to a second PdII center to afford dimeric palladium(II) complexes 7, with chloride bridges, that bear a dihydropyrrolyl-iminoisoindolinone, a new type of ligand.The compounds were characterized by IR, 1H, and 13C NMR spectroscopy, ESI MS or FAB+ MS, elemental analyses and, in the case of 4 c, 5 a, 5 c, and 7 c, also by X-ray diffraction analysis. Complexes 5 a and 7 c show high catalytic activity for the Suzuki-Miyaura cross-coupling reaction of bromobenzene and phenylboronic acid and give biphenyl in high yields with turnover frequencies (TOFs) of up to 9.0x10(5) h(-1).  相似文献   

19.
以(2R)-3-[(3S,4R)-1-(叔丁基二甲基硅氧基)乙基]-4-乙酰氧基氮杂环丁-2-酮为母体,2-溴乙(丙)酸酯或2-溴丙酰胺为亲核试剂,通过Reformatsky反应合成了一系列新型的1-β-碳氢霉烯类抗生素中间体——3-{(2R)-2-[(3S,4R)-1-(叔丁基二甲基硅氧基)乙基]氮杂环丁-2-酮-4-基}乙(丙)酸酯(3a~3d)和3-{(2R)-2-[(3S,4R)-1-(叔丁基二甲基硅氧基)乙基]氮杂环丁-2-酮-4-基}-N,N-二取代丙酰胺(3e,3i和3k),其结构经1H NMR和13C NMR表征,其中3a~3e和3i未见文献报道。  相似文献   

20.
A bond energy decomposition analysis has been carried out to rationalize the well-established experimental fact that C-C and C-H bond energies decrease with increasing substitution on the carbon. It is shown that this trend is set by steric 1,3 repulsive interactions (geminal repulsion) that increase in the order 1,3 hydrogen-hydrogen < 1,3 hydrogen-carbon < 1,3 carbon-carbon. On the other hand, the radical stabilization energy has little influence on the observed trend for the C-H bond energy in H-CR(1)R(2)R(3) or the C-C bond energy in H(3)C-CR(1)R(2)R(3). Thus, it varies in H-CR(1)R(2)R(3) from -7.2 kcal/mol (H-CH3) to -6.5 kcal/mol (H-C(CH3)3) and in H(3)C-CR(1)R(2)R(3) from -19.0 kcal/mol (H(3)C-CH(3)) to -16.9 kcal/mol (H(3)C-C(CH(3))(3)). It was further found that the average intrinsic C-H bond energy in H-CR(1)R(2)R(3) of 129.2 kcal/mol is smaller than the average intrinsic C-C bond energy in H(3)C-CR(1)R(2)R(3) of 143.4 kcal/mol. However, after the inclusion of steric effects, the overall C-H bond becomes stronger than the C-C bond. The role of steric 1,3 repulsive interactions as the trend setting factor has most recently been suggested by Gronert (J. Org. Chem. 2006, 71, 1209) based on an empirical fit of alkane atomization energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号