首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel superposition method based on the symplectic geometry approach is presented for exact bending analysis of rectangular cantilever thin plates. The basic equations for rectangular thin plate are first transferred into Hamilton canonical equations. By the symplectic geometry method, the analytic solutions to some problems for plates with slidingly supported edges are derived. Then the exact bending solutions of rectangular cantilever thin plates are obtained using the method of superposition. The symplectic superposition method developed in this paper is completely rational compared with the conventional analytical ones because the predetermination of deflection functions, which is indispensable in existing methods, is dispelled.  相似文献   

2.
This paper presents a bridging research between a modeling methodology in quantum mechanics/relativity and elasticity. Using the symplectic method commonly applied in quantum mechanics and relativity, a new symplectic elasticity approach is developed for deriving exact analytical solutions to some basic problems in solid mechanics and elasticity which have long been bottlenecks in the history of elasticity. In specific, it is applied to bending of rectangular thin plates where exact solutions are hitherto unavailable. It employs the Hamiltonian principle with Legendre’s transformation. Analytical bending solutions could be obtained by eigenvalue analysis and expansion of eigenfunctions. Here, bending analysis requires the solving of an eigenvalue equation unlike in classical mechanics where eigenvalue analysis is only required in vibration and buckling problems. Furthermore, unlike the semi-inverse approaches in classical plate analysis employed by Timoshenko and others such as Navier’s solution, Levy’s solution, Rayleigh–Ritz method, etc. where a trial deflection function is pre-determined, this new symplectic plate analysis is completely rational without any guess functions and yet it renders exact solutions beyond the scope of applicability of the semi-inverse approaches. In short, the symplectic plate analysis developed in this paper presents a breakthrough in analytical mechanics in which an area previously unaccountable by Timoshenko’s plate theory and the likes has been trespassed. Here, examples for plates with selected boundary conditions are solved and the exact solutions discussed. Comparison with the classical solutions shows excellent agreement. As the derivation of this new approach is fundamental, further research can be conducted not only on other types of boundary conditions, but also for thick plates as well as vibration, buckling, wave propagation, etc.  相似文献   

3.
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.  相似文献   

4.
首先把弹性薄板弯曲问题的控制方程表示成为Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出矩形悬臂薄板的解析解。由于在求解过程中不需要事先人为地选取挠度函数,而是从薄板弯曲的基本方程出发,直接利用数学的方法求出可以满足其边界条件的这类问题的解析解,使得问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文所采用的方法以及所推导出的公式的正确性。  相似文献   

5.
环扇形薄板弯曲问题的环向辛对偶求解方法   总被引:1,自引:0,他引:1  
姚伟岸  孙贞 《力学学报》2008,40(4):557-563
根据平面弹性与薄板弯曲问题的相似性原理,极坐标系板弯曲的弯矩函数被引入作为原变量,并通过恰当的辛内积定义建立了环扇形薄板弯曲问题的一个辛几何空间. 然后应用类Hellinger-Reissner变分原理,导出了辛几何空间的对偶方程,从而将环扇形薄板弯曲问题导入到辛对偶求解体系. 于是,分离变量和本征展开的有效数学物理方法得以实施,给出环扇形薄板弯曲问题的一个分析求解方法. 具体讨论了两弧边简支和两弧边一边固支一边自由薄板的本征问题,分别导出它们对应的本征值超越方程和本征向量,并给出原问题本征展开形式的通解. 最后,给出了两个算例的分析解并与已有文献或数值方法的解进行了对比,结果表明该方法有很好的收敛性和精度.   相似文献   

6.
This paper deals with the bending of rectangular thin plates point-supported at three corners using an analytic symplectic superposition method. The problems are of fundamental importance in both civil and mechanical engineering, but there were no accurate analytic solutions reported in the literature. This is attributed to the difficulty in seeking the solutions that satisfy the governing fourth-order partial differential equation with the free boundary conditions at all the edges as well as the support conditions at the corners. In the following, the Hamiltonian system-based equation for plate bending is formulated, and two types of fundamental problems are analytically solved by the symplectic method. The analytic solutions of the plates point-supported at three corners are then obtained by superposition, where the constants are obtained by a set of linear equations. The solution procedure presented in this paper offers a rigorous way to yield analytic solutions of similar problems. Some numerical results, validated by the finite element method, are shown to provide useful benchmarks for comparison and validation of other solution methods.  相似文献   

7.
弹性地基上矩形薄板问题的Hamilton正则方程及解析解   总被引:1,自引:0,他引:1  
利用辛算法求出弹性地基上矩形薄板问题的解析解,将弹性地基视为双参数弹性地基,直接从弹性矩形薄板的控制方程推导出了问题的Hamilton正则方程,为求出任意边界条件下问题的理论解奠定了基础,并且通过算例验证了文中所采用方法的正确性.  相似文献   

8.
研究Winkler地基上正交各向异性矩形薄板弯曲方程所对应的Hamilton正则方程, 计算出其对边滑支条件下相应Hamilton算子的本征值和本征函数系, 证明该本征函数系的辛正交性以及在Cauchy主值意义下的完备性, 进而给出对边滑支边界条件下Hamilton正则方程的通解, 之后利用辛叠加方法求出Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的解析解. 最后通过两个具体算例验证了所得解析解的正确性.  相似文献   

9.
Symplectic solution system for reissner plate bending   总被引:3,自引:0,他引:3  
Based on the Hellinger-Reissner variatonal principle for Reissner plate bendingand introducing dual variables, Hamiltonian dual equations for Reissner plate bending werepresented. Therefore Hamiltonian solution system can also be applied to Reissner platebending problem, and the transformation from Euclidian space to symplectic space and fromLagrangian system to Hamiltonian system was realized. So in the symplectic space whichconsists of the original variables and their dual variables, the problem can be solved viaeffective mathematical physics methods such as the method of separation of variables andeigenfunction-vector expansion. All the eigensolutions and Jordan canonical formeigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the alleigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and theyform a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzeroeigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is notthe same as the classical semi-inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.  相似文献   

10.
弹性矩形板问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
为了采用辛算法求出弹性矩形板问题的解析解,中直接从弹性矩形板的控制方程出发推导了弹性矩形板,其中包括弹性矩形薄板和厚板问题以及弹性地基上矩形薄板和厚板问题的Hamilton正则方程,为利用辛几何方法求出任意边界条件下这类问题的理论解奠定了基础.  相似文献   

11.
角点支承矩形薄板的屈曲问题是板壳力学的一类重要课题,控制方程和边界条件的复杂性导致寻求该类问题的解析解十分困难。虽然各类近似/数值方法可用于解决此类难题,但作为基准的精确解析解在公开文献中鲜有报道。本文基于近年来提出的辛叠加方法,解析求解了四角点支承四边自由矩形薄板的屈曲问题。首先将问题拆分为两个子问题,接着利用分离变量与辛本征展开推导出子问题的解析解,最后通过叠加获得原问题的解。由于求解过程从基本控制方程出发,逐步严格推导,无需假定解的形式,因此本文解法是一种理性的解析方法。数值算例给出了不同长宽比和不同面内载荷比情况下,四角点支承四边自由矩形薄板的屈曲载荷和典型屈曲模态,并经有限元方法验证,确认了解析解的正确性。  相似文献   

12.
范俊海 《力学季刊》2023,44(1):88-100
本文基于非局部弹性理论及辛叠加方法,得到放置在黏弹性介质上四角点支撑矩形纳米板稳态受迫振动问题的解析解.将纳米板受迫振动问题导入哈密顿体系,得到哈密顿控制方程,在无需任何预设函数的情况下可直接对哈密顿控制方程进行求解,得到简支纳米板稳态受迫振动问题在辛空间展开形式的解析解.进而通过边界叠加,可求出四角点支撑纳米板稳态受迫振动的解析解.数值算例中验证了本文应用辛叠加方法得到解析解的准确性,并以石墨烯纳米板为例,分析了非局部参数和黏弹性介质参数对四角点支撑石墨烯纳米板稳态受迫振动的影响.结果表明,非局部参数和黏弹性介质参数的变化会影响石墨烯纳米板的共振频率及共振幅值.  相似文献   

13.
四边固支矩形薄板自由振动的哈密顿解析解   总被引:2,自引:1,他引:1  
在哈密顿体系中利用辛几何方法求解了四边固支矩形薄板自由振动问题的解析解。首先,从基本方程出发,将问题表示成Hamilton正则方程,然后利用辛几何方法导出本征值问题,从而得到本征函数解,使之满足边界条件;再由方程组有非零解的条件,最终推导出四边固支矩形薄板的自振频率方程,得到频率的解析解。计算了不同长宽比情况下四边固支矩形薄板的频率,结果与已有文献完全一致。该解法有望推广至更多尚未得到解析解的矩形板的振动问题。  相似文献   

14.
Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads are derived by using a novel double finite integral transform method. Since only the basic elasticity equations for orthotropic thin plates are used, the method presented in this paper eliminates the need to predetermine the deformation function and is hence completely rational thus more accurate than conventional semi-inverse methods, which presents a breakthrough in solving plate bending problems as they have long been bottlenecks in the history of elasticity. Numerical results are presented to demonstrate the validity and accuracy of the approach as compared with those previously reported in the literature  相似文献   

15.
《力学快报》2021,11(5):100293
A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years. The method has yielded many new analytic solutions due to its rigorousness. In this study, the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge. The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied. The solution procedure incorporates separation of variables, symplectic eigen solution and superposition. The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems. The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use. The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.  相似文献   

16.
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.  相似文献   

17.
Nonlinear bending behavior of 3D braided rectangular plates subjected to transverse loads is investigated. A new micro-macro-mechanical model of unit cells is suggested. In this model, a 3D braided composite may be considered as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate. The material properties of the epoxy are expressed as a linear function of temperature. Based on Reddy’s higher-order shear deformation plate theory and general von Kármán-type equations, analytical solutions for nonlinear bending behavior of simply supported 3D braided rectangular plates are obtained using mixed Galerkin-perturbation method. The numerical examples concern effects of geometric parameters, of fiber volume fraction, braiding angle and load boundary condition.  相似文献   

18.
Peddieson  John  Liu  Y. Jane 《Meccanica》2017,52(4-5):1035-1050

Governing equations are developed for small strain moderately large axisymmetric deflections of a class of isotropic homogeneous materially nonlinear elastic circular plates. These equations are found to contain through thickness integrals which cannot always be carried out in closed form. Important special cases of the governing equations are identified. The utility of the class of material nonlinearities considered is illustrated by presenting an exact solution for small deflection pure bending, an approximate solution for small deflection bending due to a uniform pressure, and an exact elastic stability analysis. Some of these solutions are simplified for specific elements of the class of material nonlinearities employed.

  相似文献   

19.
薄板理论的正交关系及其变分原理   总被引:4,自引:2,他引:4  
利用平面弹性与板弯曲的相似性理论,将弹性力学新正交关系中构造对偶向量的思路推广到 各向同性薄板弹性弯曲问题,由混合变量求解法直接得到对偶微分方程并推导了对应的变分 原理. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了两个独立的、对称 的正交关系,利用薄板弹性弯曲理论的积分形式证明了这种正交关系的成立. 在恰当选择对 偶向量后,弹性力学的新正交关系可以推广到各向同性薄板弹性弯曲理论.  相似文献   

20.
Based on elasticity theory, various two-dimensional (2D) equations and solutions for extensional deformation have been deduced systematically and directly from the three-dimensional (3D) theory of thick rectangular plates by using the Papkovich–Neuber solution and the Lur’e method without ad hoc assumptions. These equations and solutions can be used to construct a refined theory of thick plates for extensional deformation. It is shown that the displacements and stresses of the plate can be represented by the displacements and transverse normal strain of the midplane. In the case of homogeneous boundary conditions, the exact solutions for the plate are derived, and the exact equations consist of three governing differential equations: the biharmonic equation, the shear equation, and the transcendental equation. With the present theory a solution of these can satisfy all the fundamental equations of 3D elasticity. Moreover, the refined theory of thick plate for bending deformation constructed by Cheng is improved, and some physical or mathematical explanations and proof are provided to support our justification. It is important to note that the refined theory is consistent with the decomposition theorem by Gregory. In the case of nonhomogeneous boundary conditions, the approximate governing differential equations and solutions for the plate are accurate up to the second-order terms with respect to plate thickness. The correctness of the stress assumptions in the classic plane-stress problems is revised. In an example it is shown that the exact or accurate solutions may be obtained by applying the refined theory deduced herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号