首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
利用辛几何方法本文推导出了四边固支矩形弹性薄板弯曲问题的精确解析解.由于在求解过程中不需要事先人为的选取挠度函数,而是从弹性薄板的基本方程出发,首先将矩形薄板弯曲问题表示成Hamilton正则方程,然后利用分离变量和本征函数展开的方法求出可以完全满足四边固支边界条件的精确解析解.本文中所采用的方法突破了传统的半逆法的限制,使得问题的求解更加合理化.文中还给出了计算实例来证明推导结果的正确性.  相似文献   

2.
弹性地基上矩形薄板问题的Hamilton正则方程及解析解   总被引:1,自引:0,他引:1  
利用辛算法求出弹性地基上矩形薄板问题的解析解,将弹性地基视为双参数弹性地基,直接从弹性矩形薄板的控制方程推导出了问题的Hamilton正则方程,为求出任意边界条件下问题的理论解奠定了基础,并且通过算例验证了文中所采用方法的正确性.  相似文献   

3.
弹性矩形板问题的Hamilton正则方程   总被引:1,自引:0,他引:1  
为了采用辛算法求出弹性矩形板问题的解析解,中直接从弹性矩形板的控制方程出发推导了弹性矩形板,其中包括弹性矩形薄板和厚板问题以及弹性地基上矩形薄板和厚板问题的Hamilton正则方程,为利用辛几何方法求出任意边界条件下这类问题的理论解奠定了基础.  相似文献   

4.
四边固支矩形薄板自由振动的哈密顿解析解   总被引:2,自引:1,他引:1  
在哈密顿体系中利用辛几何方法求解了四边固支矩形薄板自由振动问题的解析解。首先,从基本方程出发,将问题表示成Hamilton正则方程,然后利用辛几何方法导出本征值问题,从而得到本征函数解,使之满足边界条件;再由方程组有非零解的条件,最终推导出四边固支矩形薄板的自振频率方程,得到频率的解析解。计算了不同长宽比情况下四边固支矩形薄板的频率,结果与已有文献完全一致。该解法有望推广至更多尚未得到解析解的矩形板的振动问题。  相似文献   

5.
弹性半空间地基上正交异性矩形板弯曲通解   总被引:2,自引:0,他引:2  
本文先对受任意边界约束的正交各向异性矩形薄板,在各种形式荷载作用下的弯曲问题,构造了四次逐项可导的带有补充项的双重正弦傅里叶级数新通解.该解析解既不需要叠加,对不同的物性参数又不需要分类,而且待定系数少又具有明确的物理含义,这使得正交各向异性矩形薄板的弯曲问题求解统一化、简单化、规律化.然后将新通解与弹性半空间受任意竖向荷载作用下的静力位移积分变换解相结合,得出弹性半空间地基上受任意边界约束的正交各向异性矩形板,在任意竖向荷载作用下的弯曲解析解.本文还给出了算例分析,其结果与文献吻合良好,证明本文的方法是切实可行的.  相似文献   

6.
运用Fourier分析方法,建立了对边简支的矩形中厚板弯曲问题的完备的辛本征展开. 借助于Mathematica软件的帮助,得到了来源于矩形中厚板问题的Hamilton算子的本征函数. 接着证明了本征函数系的完备性,这为使用分离变量法求解相应问题提供了理论保证;进而运用完备性定理,得到了问题的解析解;一个数值算例验证了结果的正确性.  相似文献   

7.
四边任意支承条件下弹性矩形薄板弯曲问题的解析解   总被引:1,自引:0,他引:1  
钟阳  张永山 《应用力学学报》2005,22(2):293-297,i013
利用辛几何法推导出了四边为任意支承条件下矩形薄板弯曲的解析解。在分析过程中首先把矩形薄板弯曲问题表示成Hamilton正则方程,然后利用辛几何方法对全状态相变量进行分离变量,求出其本征值后,再按本征函数展开的方法求出四边为任意支承条件下矩形薄板弯曲的解析解。由于在求解过程中并不需要人为的事先选取挠度函数,而是从弹性矩形薄板弯曲的基本方程出发,直接利用数学的方法求出问题的解析解,使得这类问题的求解更加理论化和合理化。文中的最后还给出了计算实例来验证本文方法的正确性。  相似文献   

8.
选用更具广泛性的横观各向同性弹性半空间地基模型,来分析四边自由各向异性矩形地基板的弯曲解析解.将异性薄板的弯曲控制方程,与基于横观各向同性弹性半空间地基位移解建立的板与地基变形协调方程相结合,先按对称性分解,然后用三角级数法,得出横观各向同性弹性半空间地基上四边自由各向异性矩形薄板的弯曲解析解,包括地基反力、板的挠度及内力的解析表达式.该解析解克服了数值法的弊端,取消了对地基反力的假设,板的内力及地基反力求解更切实际.算例结果与文献结果吻合良好,证明本文方法的可行性.  相似文献   

9.
对横观各向同性体通解进行双重傅里叶变换,获得了直角坐标系下横观各向同性弹性半空间地基受任意竖向荷载作用下的位移积分变换解;在此基础上建立了板与地基的变形协调方程,并与三个广义位移变量描述的弹性地基上四边自由正交各向异性矩形中厚板的弯曲控制方程相结合,用三角级数法,得出横观各向同性弹性半空间地基上四边自由正交异性矩形中厚板受任意竖向荷载作用的弯曲解析解。相关算例分析表明,本文方法是有效的。  相似文献   

10.
王春玲  周波  胡勇 《应用力学学报》2013,(4):469-474,641
选用弹性半空间地基模型分析四边自由各向异性矩形地基板的弯曲和稳态振动解析解。将异性薄板控制微分方程与基于弹性半空间地基位移解建立的板与地基变形协调方程相结合,先按对称性分解,然后采用三角级数法得出了弹性半空间地基上四边自由各向异性矩形薄板的弯曲和稳态振动解析解,包括地基反力(幅值)、板的挠度(幅值)、板的内力(幅值)的解析表达式。克服了数值法的弊端,取消了对地基反力的假设,得到了板的内力(幅值)及地基反力(幅值)更切实际的分布规律。算例结果不但与文献结果吻合良好,而且表明对于异形板,对称载荷能引起反对称的内力和变形。该方法使得半空间地基上各向异性矩形薄板这一复杂的接触问题的求解统一化、简单化、规律化。  相似文献   

11.
A novel superposition method based on the symplectic geometry approach is presented for exact bending analysis of rectangular cantilever thin plates. The basic equations for rectangular thin plate are first transferred into Hamilton canonical equations. By the symplectic geometry method, the analytic solutions to some problems for plates with slidingly supported edges are derived. Then the exact bending solutions of rectangular cantilever thin plates are obtained using the method of superposition. The symplectic superposition method developed in this paper is completely rational compared with the conventional analytical ones because the predetermination of deflection functions, which is indispensable in existing methods, is dispelled.  相似文献   

12.
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.  相似文献   

13.
Rui Li  Bin Tian  Yang Zhong 《Meccanica》2013,48(10):2497-2510
This paper presents the analytical solutions for the bending of orthotropic rectangular thin plates by the double finite integral transform, which, as an effective tool in solving plate problems, should have received attention. As a representative and difficult problem in the theory of plates, free plates’ bending is successfully solved to demonstrate the accuracy of the method by comparing the present analytical solutions with those from the literature as well as those by the finite element method. With the proper integral transform kernels, the proposed solution procedure is applicable to the bending of orthotropic rectangular plates with all combinations of simply supported, clamped and free boundary conditions, which serves as an elegant approach to analytical solutions of plate bending problems.  相似文献   

14.
This paper presents a bridging research between a modeling methodology in quantum mechanics/relativity and elasticity. Using the symplectic method commonly applied in quantum mechanics and relativity, a new symplectic elasticity approach is developed for deriving exact analytical solutions to some basic problems in solid mechanics and elasticity which have long been bottlenecks in the history of elasticity. In specific, it is applied to bending of rectangular thin plates where exact solutions are hitherto unavailable. It employs the Hamiltonian principle with Legendre’s transformation. Analytical bending solutions could be obtained by eigenvalue analysis and expansion of eigenfunctions. Here, bending analysis requires the solving of an eigenvalue equation unlike in classical mechanics where eigenvalue analysis is only required in vibration and buckling problems. Furthermore, unlike the semi-inverse approaches in classical plate analysis employed by Timoshenko and others such as Navier’s solution, Levy’s solution, Rayleigh–Ritz method, etc. where a trial deflection function is pre-determined, this new symplectic plate analysis is completely rational without any guess functions and yet it renders exact solutions beyond the scope of applicability of the semi-inverse approaches. In short, the symplectic plate analysis developed in this paper presents a breakthrough in analytical mechanics in which an area previously unaccountable by Timoshenko’s plate theory and the likes has been trespassed. Here, examples for plates with selected boundary conditions are solved and the exact solutions discussed. Comparison with the classical solutions shows excellent agreement. As the derivation of this new approach is fundamental, further research can be conducted not only on other types of boundary conditions, but also for thick plates as well as vibration, buckling, wave propagation, etc.  相似文献   

15.
Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads are derived by using a novel double finite integral transform method. Since only the basic elasticity equations for orthotropic thin plates are used, the method presented in this paper eliminates the need to predetermine the deformation function and is hence completely rational thus more accurate than conventional semi-inverse methods, which presents a breakthrough in solving plate bending problems as they have long been bottlenecks in the history of elasticity. Numerical results are presented to demonstrate the validity and accuracy of the approach as compared with those previously reported in the literature  相似文献   

16.
This paper deals with the bending of rectangular thin plates point-supported at three corners using an analytic symplectic superposition method. The problems are of fundamental importance in both civil and mechanical engineering, but there were no accurate analytic solutions reported in the literature. This is attributed to the difficulty in seeking the solutions that satisfy the governing fourth-order partial differential equation with the free boundary conditions at all the edges as well as the support conditions at the corners. In the following, the Hamiltonian system-based equation for plate bending is formulated, and two types of fundamental problems are analytically solved by the symplectic method. The analytic solutions of the plates point-supported at three corners are then obtained by superposition, where the constants are obtained by a set of linear equations. The solution procedure presented in this paper offers a rigorous way to yield analytic solutions of similar problems. Some numerical results, validated by the finite element method, are shown to provide useful benchmarks for comparison and validation of other solution methods.  相似文献   

17.
《力学快报》2021,11(5):100293
A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years. The method has yielded many new analytic solutions due to its rigorousness. In this study, the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge. The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied. The solution procedure incorporates separation of variables, symplectic eigen solution and superposition. The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems. The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use. The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.  相似文献   

18.
角点支承矩形薄板的屈曲问题是板壳力学的一类重要课题,控制方程和边界条件的复杂性导致寻求该类问题的解析解十分困难。虽然各类近似/数值方法可用于解决此类难题,但作为基准的精确解析解在公开文献中鲜有报道。本文基于近年来提出的辛叠加方法,解析求解了四角点支承四边自由矩形薄板的屈曲问题。首先将问题拆分为两个子问题,接着利用分离变量与辛本征展开推导出子问题的解析解,最后通过叠加获得原问题的解。由于求解过程从基本控制方程出发,逐步严格推导,无需假定解的形式,因此本文解法是一种理性的解析方法。数值算例给出了不同长宽比和不同面内载荷比情况下,四角点支承四边自由矩形薄板的屈曲载荷和典型屈曲模态,并经有限元方法验证,确认了解析解的正确性。  相似文献   

19.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

20.
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号