首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究Winkler地基上正交各向异性矩形薄板弯曲方程所对应的Hamilton正则方程, 计算出其对边滑支条件下相应Hamilton算子的本征值和本征函数系, 证明该本征函数系的辛正交性以及在Cauchy主值意义下的完备性, 进而给出对边滑支边界条件下Hamilton正则方程的通解, 之后利用辛叠加方法求出Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的解析解. 最后通过两个具体算例验证了所得解析解的正确性.  相似文献   

2.
板弯曲求解新体系及其应用   总被引:41,自引:3,他引:38  
钟万勰  姚伟岸 《力学学报》1999,31(2):173-184
建立平面弹性与板弯曲的相似性理论,给出了板弯曲经典理论的另一套基本方程与求解方法,然后进入哈密顿体系用直接法研究板弯曲问题.新方法论应用分离变量、本征函数展开方法给出了条形板问题的分析解,突破了传统半逆解法的限制.结果表明新方法论有广阔的应用前景.  相似文献   

3.
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.  相似文献   

4.
A novel superposition method based on the symplectic geometry approach is presented for exact bending analysis of rectangular cantilever thin plates. The basic equations for rectangular thin plate are first transferred into Hamilton canonical equations. By the symplectic geometry method, the analytic solutions to some problems for plates with slidingly supported edges are derived. Then the exact bending solutions of rectangular cantilever thin plates are obtained using the method of superposition. The symplectic superposition method developed in this paper is completely rational compared with the conventional analytical ones because the predetermination of deflection functions, which is indispensable in existing methods, is dispelled.  相似文献   

5.
A modified continuum model of elastic films with nano-scale thickness is proposed by incorporating surface elasticity into the conventional nonlinear Von Karman plate theory. By using Hamilton’s principle, the governing equations and boundary conditions of the ultra-thin film including surface effects are derived within the Kirchhoff’s assumption, where the effects of non-zero normal stress and large deflection are taken into account simultaneously. The present model is then applied to studying the bending, buckling and free vibration of simply supported micro/nano-scale thin films in-plane strains and explicit exact solutions can be obtained for these three cases. The size-dependent mechanical behavior of the thin film due to surface effects is well elucidated in the obtained solutions.  相似文献   

6.
The symplectic geometry method is introduced for exact bending solutions of moderately thick rectangular plates with two opposite edges simply supported. The basic equations for the plates are first transferred into Hamilton canonical equations. The whole state variables are then separated. Using the method of eigenfunction expansion in the symplectic geometry, typical examples for plates with selected boundary conditions are solved and exact bending solutions obtained. Since only the basic elasticity equations of the plates are used, this method eliminates the need to pre-determine the deformation function and is hence more reasonable than conventional methods. Numerical results were presented to demonstrate the validity and accuracy of this approach as compared to those reported in other literatures.  相似文献   

7.
Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads are derived by using a novel double finite integral transform method. Since only the basic elasticity equations for orthotropic thin plates are used, the method presented in this paper eliminates the need to predetermine the deformation function and is hence completely rational thus more accurate than conventional semi-inverse methods, which presents a breakthrough in solving plate bending problems as they have long been bottlenecks in the history of elasticity. Numerical results are presented to demonstrate the validity and accuracy of the approach as compared with those previously reported in the literature  相似文献   

8.
基于一阶剪切变形板理论,推导了功能梯度材料圆形板在边界面内均布压力作用下的轴对称屈曲方程。在推导过程中,忽略了前屈曲耦合变形。利用一阶板理论与经典板理论屈曲方程之间在数学形式上的相似性,得到了一阶板理论下功能梯度材料圆板与经典板理论下均匀圆板临界屈曲载荷之间的解析关系。利用这个解析关系,可以直接从已有的较为简单的经典理论的结果,获得一阶板理论下功能梯度材料板的临界屈曲载荷。  相似文献   

9.
Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.  相似文献   

10.
SYMPLECTIC SOLUTION SYSTEM FOR REISSNER PLATE BENDING   总被引:3,自引:0,他引:3  
Based on the Hellinger-Reissner variatonal principle for Reissner plate bendingand introducing dual variables, Hamiltonian dual equations for Reissner plate bending werepresented. Therefore Hamiltonian solution system can also be applied to Reissner platebending problem, and the transformation from Euclidian space to symplectic space and fromLagrangian system to Hamiltonian system was realized. So in the symplectic space whichconsists of the original variables and their dual variables, the problem can be solved viaeffective mathematical physics methods such as the method of separation of variables andeigenfunction-vector expansion. All the eigensolutions and Jordan canonical formeigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the alleigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and theyform a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzeroeigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is notthe same as the classical semi-inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.  相似文献   

11.
Based on the mathematical similarity of the axisymmetric eigenvalue problems of a circular plate between the classical plate theory(CPT), the first-order shear deformation plate theory(FPT) and the Reddy's third-order shear deformation plate theory (RPT), analytical relations between the eigenvalues of circular plate based on various plate theories are investigated. In the present paper, the eigenvalue problem is transformed to solve an algebra equation. Analytical relationships that are expressed explicitly between various theories are presented. Therefore, from these relationships one can easily obtain the exact RPT and FPT solutions of critical buckling load and natural frequency for a circular plate with CPT solutions. The relationships are useful for engineering application, and can be used to check the validity, convergence and accuracy of numerical results for the eigenvalue problem of plates.  相似文献   

12.
A new trigonometric shear deformation theory for isotropic and composite laminated and sandwich plates, is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature. The results show that the present model performs as good as the Reddy’s and Touratier’s shear deformation theories for analyzing the static behavior of isotropic and composite laminated and sandwich plates.  相似文献   

13.
极坐标哈密顿体系约当型与弹性楔的佯谬解   总被引:9,自引:2,他引:7  
姚伟岸 《力学学报》2001,33(1):79-86
讨论了极坐标弹性平面哈密顿体系的当型,并通过约当型的求解,直接给出了相关弹性楔体佯谬问题的解,从理论上阐明了经典弹性力学中某些佯谬问题的出现是由于其对应的是哈密顿体系中特殊的约当型解,同时也很自然地为该类问题提供了一个通用,有效的求解方法。  相似文献   

14.
张腾 《计算力学学报》2024,41(1):209-216
辛弹性力学已广泛应用于弹性学中各种边值问题的精确解、计算表面波模式以及预测多层超弹性薄膜中的表面褶皱。本文展示了辛分析框架还可应用于受约束介电弹性体中的表面褶皱。机械和电位移向量是两个基本变量来描述介电弹性体中机械变形与电场紧密耦合。褶皱的临界电压可以通过引入基本变量的对偶变量来从辛本征值问题中解决。本文采用扩展的W-W(Wittrick-Williams)算法和精确的积分方法,准确而高效地解决制定的辛本征值问题的本征值。通过将褶皱电压和波数与有无表面能的褶皱基准结果进行比较,验证了辛分析的有效性。辛分析框架简洁且适用于其他不稳定问题,如分层电介质弹性体、磁弹性不稳定性以及层压复合结构的微观和宏观不稳定性。  相似文献   

15.
薄板理论的正交关系及其变分原理   总被引:6,自引:2,他引:4  
利用平面弹性与板弯曲的相似性理论,将弹性力学新正交关系中构造对偶向量的思路推广到 各向同性薄板弹性弯曲问题,由混合变量求解法直接得到对偶微分方程并推导了对应的变分 原理. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了两个独立的、对称 的正交关系,利用薄板弹性弯曲理论的积分形式证明了这种正交关系的成立. 在恰当选择对 偶向量后,弹性力学的新正交关系可以推广到各向同性薄板弹性弯曲理论.  相似文献   

16.
基于经典板理论,研究了功能梯度材料圆板的轴对称弯曲、屈曲和自由振动解与相应的均匀材料圆板解之间的转换关系.通过消去拉-弯耦合项得到了以挠度函数表示的功能梯度圆板的弯曲、屈曲和自由振动控制方程.分析功能梯度圆板与均匀圆板的控制方程之间的相似性,得到了功能梯度材料圆板与均匀圆板的解之间解的相似转换关系,在假定FGM圆板的材料性质沿厚分别以幂函数和指数函数的度变规律后,给出了相应的转换系数的解析表达式.该系数集中反映了功能梯度圆板的材料非均匀性.在已知均匀材料圆板轴对称解的条件下,可将功能梯度材料圆板轴对称问题的求解转化为相似转换系数的计算问题.这一方法可为非均匀板的求解提供了十分便捷有效的途径,而且便于工程应用.  相似文献   

17.
An exact three dimensional solution for the problem of a transversely loaded, simply supported rectangular plate of arbitrary thickness is presented within the linear theory of elastostatics. The solution, obtained in a semi-inverse fashion, satisfies all the boundary conditions of the problem in a pointwise manner and is in the form of a double Fourier sine series. The classical Navier solution for the problem is shown to be the limit of the present solution as the plate thickness aspect ratio approaches zero. It is noted that the solution presented provides a benchmark against which approximate theories of transversely loaded plates may be measured. The new elasticity solution also provides a heuristic basis for a novel theory of thick plates of arbitrary planform and edge support recently given by the author.  相似文献   

18.
Summary The relationships of bending solutions between Timoshenko beams and Euler-Bernoulli beams are derived for uniform and non-uniform beams with elastic rotationally restrained ends. Extensions of these relationships for the cylindrical bending of Mindlin and Kirchhoff plates and for the bending of symmetrically laminated beams are also discussed. The new set of general relationships is useful because the more complex Timoshenko beam and Mindlin plate solutions may be readily obtained from their simpler Euler-Bernoulli beam and Kirchhoff plate solutions respectively, without much tedious mathematics. Received 16 March 1997; accepted for publication 26 November 1997  相似文献   

19.
In the present article, axisymmetric bending and stretching of functionally graded (FG) circular plates subjected to uniform transverse loading based on fourth-order shear deformation plate theory (FOST) have been studied. Using a fourth-order shear deformation theory, the solutions for deflection and rotation functions of FG plates are presented in terms of the corresponding quantities for a homogeneous plate using the classical plate theory (CPT), from which solutions one can easily obtain the FOST solutions for axisymmetric bending of FG circular plates. It is assumed that the effective mechanical properties of the functionally graded plates through the thickness are continuous functions of the volume fractions of the constituent parts which are themselves defined by a power-law function. Numerical results for maximum deflection and shear stress are presented for various percentages of ceramic–metal volume fractions. These results are also compared with those obtained from the first-order shear deformation plate theory of Mindlin (FST), the third-order shear deformation plate theory of Reddy (TST) as well as the exact three-dimensional elasticity solution. It is found that although the maximum deflections obtained using FOST and TST are close to each other, the through-thickness shear stress is predicted more accurately by the FOST formulation than by the TST.  相似文献   

20.
Dynamic behavior of continuous systems such as beams and plates, under a moving load is an important engineering subject. In this paper, 3D elasticity equations are solved by use of the displacement potential functions and the exact solution of a simply supported thick rectangular plate under moving load is presented. For this purpose, the governing equations in terms of displacements, Navier’s equations, are converted to two linear partial differential equations of forth and second order using displacement potential functions. Then the governing equations in terms of the potential functions are solved using the separation of variables and Laplace integral transform, satisfying exact initial and boundary conditions. In order to validate the present approach, the obtained results of this study are compared with the results of the classical theory of plates for thin and existing solutions for moderately thick plates. Also, it is observed that the speed of a moving load has an important effect on the dynamic response of plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号