首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
5-氟尿嘧啶/壳聚糖载药纳米微球的制备及性能   总被引:1,自引:0,他引:1  
以三聚磷酸钠为交联剂,采用离子交联法制备了5-氟尿嘧啶/壳聚糖纳米微球,评价其性能、体外释药性能及对人肺癌细胞GLC-82的体外杀伤效应,并通过Zeta电位和红外光谱分析载药纳米微球形成机理.结果表明,所制备的5-Fu/CS纳米微球平均包封率为32.3%,平均载药量为25.6%,平均粒径为253nm,平均zeta电势为+8.38mV,成球性及分散性良好.CS载药纳米微球具有缓释性能,体外释药行为符合双向动力学规律.在体外作用72h,CS载药纳米微球对人肺癌细胞GLC-82的杀伤率达66.6%,杀伤效果明显优于5-Fu对照组.  相似文献   

2.
利用溶液法预先制备壳聚糖(Cs)-蒙脱土(MMT)复合材料(Cs-MMT),以Cs-MMT、Cs为原料,采用反相悬浮聚合法制得一种新型药物缓释体系阿司匹林-蒙脱土-壳聚糖载药微球(Asp-MMT-Cs)。采用FT-IR、SEM表征了Cs-MMT和Asp-MMT-Cs载药微球的结构及形态;设计正交实验优化了Asp-MMT-Cs载药微球的制备工艺;通过体外释放实验探讨了载药微球在不同模拟释放液中的释药规律。结果表明:所得微球球形度好,粒径分布较均匀;最优工艺制得的载药微球平均粒径为81.20μm,载药量为9.61%,包封率为76.78%。该缓释体系具有pH敏感性,更倾向于在pH较高的磷酸盐缓冲溶液中释放。  相似文献   

3.
通过表面引发接枝聚合,在交联聚乙烯醇(CPVA)微球表面实施了甲基丙烯酸(MAA)的表面引发接枝聚合,制备了高接枝度的接枝微球CPVA-g-PMAA。利用接枝微球CPVA-g-PMAA与酮洛芬(KPF)主-客体之间的氢键相互作用构建结肠定位释药体系。分析了接枝微球CPVA-g-PMAA对KPF的吸附(载药)性能与吸附机理,深入研究了载药微球在不同pH介质中的释放行为。实验结果表明,在酸性介质中,受主-客体之间强氢键作用的驱动,接枝微球CPVA-g-PMAA对KPF分子表现出强吸附能力,吸附容量接近10mg/g,可实现有效载药。载药微球的释药行为具有强烈的pH依赖性,在pH=1的介质中,释药程度很低;而在pH=7.4的介质中,则发生突释,表现出良好的结肠定位释放行为。  相似文献   

4.
以丙烯酰胺(AM)为单体,制备了羧甲基纤维素钠接枝丙烯酰胺共聚物(CMC-g-AM)。以2,4-二氯苯氧乙酸(2,4-D)为模型药物,以羽毛蛋白(FK)为共混改性剂,采用挤压法制备了CMC-g-AM/海藻酸钠(SA)/羽毛蛋白载药微球。利用红外光谱、光学显微镜、激光粒度仪分别对接枝共聚物的结构、载药微球的形貌以及粒径分布进行了表征,并探讨了不同的接枝共聚物、羽毛蛋白用量、交联剂浓度和交联时间对缓释微球的载药量和缓释性能影响。结果表明,当CMC-g-AM的合成单体比AM:CMC为3:1,羽毛蛋白用量为30%,交联剂浓度为0.7 mol·L-1,交联时间为1 h,载药微球的载药量较高,为16.7%。复合微球平均粒径为1.6 mm。载药微球具有良好的缓释性能,释药曲线符合Higuchi动力学方程。  相似文献   

5.
王澜  葛圣松  邵谦  李健  杜玲玉 《无机化学学报》2016,32(11):1896-1904
以Zn(NO_3)_2·6H_2O、Ni(NO_3)_2·6H_2O、Al(NO_3)_3·9H_2O和尿素为原料,采用一步水热法制备分散性良好的三元锌镍铝水滑石(ZnNiAl-LDHs)微球。通过X射线衍射(XRD)、傅里叶转换红外光谱(FTIR)、场发射扫描电镜(FESEM)、透射电镜(TEM)和氮气吸附-脱附等测试手段对样品的结构和形貌进行表征,并比较ZnNiAl-LDHs和ZnAl-LDHs对甲基橙(MO)的吸附性能。结果表明,ZnNiAl-LDHs是由纳米片组成、具有3D结构的微球,粒径为1~2.5μm,比表面积为156m2·g~(-1),远大于ZnAl-LDHs的比表面积38m2·g~(-1);ZnNiAl-LDHs和ZnAl-LDHs对甲基橙的饱和吸附量分别为329.60和143.47mg·g~(-1),ZnNiAl-LDHs表现出更强的吸附能力,其吸附等温线和吸附动力学分别符合Langmuir等温线模型和准二级动力学模型。  相似文献   

6.
以Ti(SO_4)_2为原料,引入F~-作为壳层厚度控制剂,采用一步无模板水热法成功制备TiO_2中空微球(h-TiO_2)。利用XRD和SEM检测技术对样品进行表征分析,详细讨论了n_(Ti)∶n_F摩尔比、水热反应温度和反应时间对h-TiO_2微球壳厚的影响。结果表明,当n_(Ti)∶n_F=1、水热反应温度140 oC、水热反应时间14 h时,所得h-TiO_2微球是粒径为40-50 nm的小颗粒组成的直径约为1.8μm、壳厚约50 nm的球形中空微球,具有锐钛矿型晶体结构。n_2吸附-脱附实验表明,h-TiO_2微球具有较大的比表面积(85.5 m~2·g~(-1)),孔径主要分布在2-10 nm之间。通过亚甲基蓝(MB)溶液的光催化降解,评价了h-TiO_2微球的光催化性能。在高压汞灯照射下,反应40 min,MB的降解率达97.3%。应用于水溶液中氯霉素(CP)、磺胺二甲基嘧啶(SMT)和洛美沙星(LFC)抗生素的光催化降解,反应120min,其降解率分别达到90.2%、93.5%和96.7%,说明h-TiO_2微球具有较高的光催化降解性能。  相似文献   

7.
以可生物降解材料硬脂酸为载体, 以葛根总黄酮为模型药物, 采用乳化蒸发-低温固化法制备固体脂质纳米粒. 采用透射电镜研究载药纳米粒形态, 激光粒度分析仪测定其粒径, X射线衍射仪进行物相鉴别, 并对纳米粒的包封率及体外释药特性等进行了研究. 分析结果表明, 所制备硬脂酸固态脂质纳米粒为类球实体, 粒径分布比较均匀, 平均粒径为(263.82±3.6) nm, 包封率为(67.53±0.12)%. X射线衍射分析证明药物以分子或细小粒子分散于脂质骨架中. 体外释药研究结果表明, 纳米粒体外释药先快后慢, 12 h累积释药50%, 包封于降解材料骨架内的药物通过骨架溶蚀缓慢释放. 药物的体外释放符合Higuchi方程.  相似文献   

8.
以自制阿司匹林为药物模型,壳聚糖(CS)为载体源,采用微乳液成核-离子交联法制备了阿司匹林/壳聚糖纳米缓释微球.分别用傅里叶变换红外(FTIR)光谱、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、动态激光光散射(DLLS)、X射线粉末衍射(XRD)等表征了纳米微粒的化学组成、外观形貌、平均粒径和粒径分布、微球中壳聚糖的晶体结构以及阿司匹林的分布形态.结果表明,利用微乳液成核-离子交联法制备的阿司匹林/壳聚糖微球平均粒径约为88nm且粒径分布均匀,成核后壳聚糖结晶形态基本未变,阿司匹林以分子形态分布于微粒中,分子间未形成堆砌,为无定形态.采用UV-Vis分光光度计考察了微球的药物包封率、载药量,并对微球在生理盐水和葡萄糖溶液中的释药行为进行跟踪.结果表明,微球的载药量可达55%,药物包封率可达42%,实验条件下具有较好的药物缓释作用.  相似文献   

9.
聚合条件对制备功能化微球起到至关重要的作用。在本文中,通过功能单体、烯丙基聚氧乙烯醚(APEG)和苯乙烯的分散共聚制备了一种阻抗蛋白质吸附的功能化微球;然后,通过红外光谱(FT-IR)、动态光散射(DLS)和扫描电镜(SEM)等手段分析这些功能微球的粒径、表面形态和性能;最后通过牛血清蛋白(BSA)吸附实验评价其阻抗吸附性能。实验结果表明:APEG兼具功能单体和稳定剂的功能,在合适的条件下,可以得到良好单分散性的微球。此外,每克聚(苯乙烯-烯丙基聚氧乙烯醚)(P(St-co-APEG))微球的BSA吸附量为0.66 mg,而每克聚(苯乙烯-甲基丙烯酸缩水甘油酯)(P(St-co-GMA))微球的BSA吸附量为4.8 mg。总之,通过分散共聚制备了一种阻抗蛋白质吸附的微球。  相似文献   

10.
以水热法制备的高磁饱和强度Fe_3O_4纳米颗粒为核,正硅酸乙酯(TEOS)为前驱体,采用改进的St觟ber法,制备介孔SiO_2包覆Fe_3O_4磁性核壳复合微球。利用XRD、SEM、TEM、N2吸附-脱附、FTIR和VSM对制备样品的物相结构、形貌和磁性能进行了测试表征。研究结果表明,制备的复合材料呈球形,粒径分布均一,材料的比表面积和磁饱和强度分别为413 m2·g-1和68.93emu·g-1。研究了TEOS的添加量对复合微球形貌的影响,随着TEOS添加量的增加,SiO_2壳层增厚,复合粒子形貌均匀,饱和磁化强度有所下降,仍具有良好的超顺磁性。在此基础上,通过接枝法在复合微球的表面接枝-NH2,制备了一种新型磁性纳米吸附剂(Fe_3O_4@SiO_2@m SiO_2-NH2),进而研究了其对水中重金属离子Cr(Ⅵ)的吸附性能。通过动力学拟合,Fe_3O_4@SiO_2@m SiO_2-NH2对Cr(Ⅵ)的吸附过程是准二级动力学模型占主导地位,探究了该材料对Cr(Ⅵ)的吸附过程和吸附机理。结果表明,其吸附机理及吸附容量与Cr(Ⅵ)的离子形态及-NH2有关,并通过吸附剂与吸附质之间的电子共用或静电吸附实现。  相似文献   

11.
基于工业蛭石优异的热膨胀性及阳离子交换性,利用化学-微波法制备高膨胀率膨胀蛭石(HEV),采用对比分析法对亚甲基蓝(MB)的吸附性能进行了研究。结果表明,HEV膨胀率高(膨胀率K=60倍),比表面积大(80 m^2·g^-1),孔径主要分布在2~5 nm之间,仍保持蛭石、水金云母和金云母的物相结构,阳离子交换容量由原样的0.835 mmol·g^-1增加到1.005 mmol·g^-1。HEV对MB的吸附容量受MB初始浓度、吸附时间、溶液pH和吸附温度影响。当MB溶液初始浓度为300 mg·L-1、吸附时间为240 min、溶液pH值为9、吸附温度为298 K时,吸附量为419.87 mg·g^-1,远高于蛭石原矿。吸附过程符合Langmuir模型与准二级动力学模型,为单分子层吸附和吸附势垒较低的自发无序吸热反应过程。HEV具有优异的阳离子交换性和吸附性,是一种具有开发价值的高效低成本吸附剂。  相似文献   

12.
用改进的Hummers法制备了氧化石墨烯,用乙二胺、乙二胺与丁二胺/己二胺混溶来改性氧化石墨烯。用水热法制备了Fe3O4,并用物理混合法制备了GO/Fe3O4/有机胺的三元复合体系。用透射电镜、扫描电镜、红外光谱、热重分析、X射线衍射、VSM和XPS等对所制得的样品进行了结构表征和性能测试,研究了三元复合粒子对结晶紫染料的吸附性能及影响结晶紫染料吸附效果的因素。结果表明:所制备的Fe3O4的平均粒径约为200 nm,粒径分布均匀;复合物中GO为典型的片状结构,GO及有机胺的掺杂没有影响Fe3O4的尖晶石结构;复合物为超顺磁性,Ms为53.0 emu·g~(-1)。吸附结果表明:石墨烯/Fe3O4/有机胺的三元复合材料对结晶紫染料的最大吸附量随浓度增大而增大,而吸附结晶紫染料的移除率却随结晶紫染料浓度增大而减小,并趋向一定值;乙二胺和己二胺混溶比例为5∶1的GO/Fe3O4复合材料吸附性能最佳:结晶紫浓度为400 mg·L~(-1),最大吸附量为164.3 mg·L~(-1)。  相似文献   

13.
研究了以木质活性炭颗粒为原料,通过KOH再活化的方法制备多微孔活性炭的方法。考察了活性炭和KOH的最佳质量比例,并通过低温氮吸附、SEM、XRD等手段表征了样品的比表面、孔结构、孔分布、颗粒形貌和晶体结构;通过对含间二甲苯50mg.L-1的气流的吸附实验表征了所制备活性炭的二甲苯去除能力,实验结果表明,经过KOH再活化显著调高了样品的间二甲苯吸附容量,这很可能和样品中发达的微孔结构有关。  相似文献   

14.
水热制备了约10nm的CoFe2O4纳米晶,通过Zeta电势、动态光散射(Dynamic Light Scattering,DLS)和傅立叶变换红外光谱(FTIR)技术研究了纳米晶与牛血清白蛋白(Bovine Serum Albumin,BSA)和牛血红蛋白(Hemoglobin)的相互作用。纳米晶对BSA和血红蛋白都有很强的吸附,其中对血红蛋白的吸附符合静电吸附的规律,而对BSA的吸附则不符合静电吸附的规律。在pH=5.5和7.0时纳米晶对BSA和血红蛋白的吸附容量分别达到237.9mg·g-1和256.9mg·g-1。DLS结果表明蛋白质能够导致纳米晶团聚。吸附BSA或血红蛋白后,纳米晶的DLS粒径由51nm分别增大到472nm和114nm。CoFe2O4纳米晶还导致了蛋白质FTIR谱发生明显变化。BSA和血红蛋白的酰胺I带由于纳米晶的作用分别减少了4cm-1和6cm-1。  相似文献   

15.
水热制备了约10 nm的CoFe2O4纳米晶,通过Zeta电势、动态光散射(Dynamic Light Scattering,DLS)和傅立叶变换红外光谱(FTIR)技术研究了纳米晶与牛血清白蛋白(Bovine Serum Albumin,BSA)和牛血红蛋白(Hemoglobin)的相互作用。纳米晶对BSA和血红蛋白都有很强的吸附,其中对血红蛋白的吸附符合静电吸附的规律,而对BSA的吸附则不符合静电吸附的规律。在pH=5.5和7.0时纳米晶对BSA和血红蛋白的吸附容量分别达到237.9 mg·g-1和256.9 mg·g-1。DLS结果表明蛋白质能够导致纳米晶团聚。吸附BSA或血红蛋白后,纳米晶的DLS粒径由51 nm分别增大到472 nm和114 nm。CoFe2O4纳米晶还导致了蛋白质FTIR谱发生明显变化。BSA和血红蛋白的酰胺I带由于纳米晶的作用分别减少了4 cm-1和6 cm-1。  相似文献   

16.
室温离子液体作为溶剂,以离子热合成法合成了羟基磷灰石超细粉体。当改变不同的离子液体作为溶剂时,可以相应调整羟基磷灰石的形貌。对羟基磷灰石分别采用X-射线粉末衍射(XRD),扫描电子显微镜(SEM),傅立叶变换红外光谱仪(FTIR)等进行表征。实验结果表明:所得到的羟基磷灰石为部分CO32-取代的羟基磷灰石,在选用EmimBF4为溶剂时所合成样品颗粒的尺寸、形貌更加规则、均一。与水作为溶剂相比,以离子液体BmimBr作为溶剂所合成的羟基磷灰石材料对有机染料碱性品红的饱和吸附量为43.78mg·g-1,具有较好的吸附性能。  相似文献   

17.
室温离子液体作为溶剂,以离子热合成法合成了羟基磷灰石超细粉体。当改变不同的离子液体作为溶剂时,可以相应调整羟基磷灰石的形貌。对羟基磷灰石分别采用X-射线粉末衍射(XRD),扫描电子显微镜(SEM),傅立叶变换红外光谱仪(FTIR)等进行表征。实验结果表明:所得到的羟基磷灰石为部分CO32-取代的羟基磷灰石,在选用EmimBF4为溶剂时所合成样品颗粒的尺寸、形貌更加规则、均一。与水作为溶剂相比,以离子液体BmimBr作为溶剂所合成的羟基磷灰石材料对有机染料碱性品红的饱和吸附量为43.78 mg·g-1,具有较好的吸附性能。  相似文献   

18.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/SuperP(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/SuperP比表面积为100.9m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6nm厚)的复合材料具有最高的电化学活性,在300mA·g-1的电流密度下,循环可逆比容量达到1900mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

19.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/Super P(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/Super P比表面积为100.9 m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6 nm厚)的复合材料具有最高的电化学活性,在300 mA·g-1的电流密度下,循环可逆比容量达到1 900 mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

20.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号