首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vanadium is used by microorganisms as an electron acceptor in respiration, and as an essential transition metal in enzymatic reactions. An example for the employment in respiratory function is the soil bacterium Shewanella, which reduces vanadate(V) to oxidovanadium(IV). Examples for enzymatic reactions are the nitrogen fixation (by the proteobacterium Azotobacter and the cyanobacterium Anabaena), and the two‐electron oxidation of halide X to a species {X+} by marine macro‐algae, fungi and lichen. In vanadium nitrogenase, vanadium is constituent of a {Fe7VS9} cluster, in vanadate‐dependent haloperoxidases it is present in the form of H2VO4 bound to a histidyl residue of the protein matrix. Mushrooms of the genus Amanita store vanadium in the form of amavadin, a “bare” (non‐oxo) vanadium(IV) complex. Several sea squirts and fan worms accumulate vanadium from sea water and store it as an aqua complex of vanadium(III). “Tailored” vanadium complexes with organic ligands have been shown to be active as insulin‐mimics in vivo and in vitro: They are able to stimulate the cellular uptake of glucose and to inhibit the degradation of lipids. These functions are related to the phosphate‐vanadate antagonism.  相似文献   

2.
Vanadate and vanadium compounds exist in many environmental, biological and clinical matrices, and despite the need only limited progress has been made on the analysis of vanadium compounds. The vanadium coordination chemistry of different oxidation states is known, and the result of the characterization and speciation analysis depends on the subsequent chemistry and the methods of analysis. Many studies have used a range of methods for the characterization and determination of metal ions in a variety of materials. One successful technique is high performance liquid chromatography (HPLC) that has been used mainly for measuring total vanadium level and metal speciation. Some cases have been reported where complexes of different oxidation states of vanadium have been separated by HPLC. Specifically reversed phase (RP) HPLC has frequently been used for the measurement of vanadium. Other HPLC methods such as normal phase, anion-exchange, cation-exchange, size exclusion and other RP-HPLC modes such as, ion-pair and micellar have been used to separate selected vanadium compounds. We will present a review that summarizes and critically analyzes the reported methods for analysis of vanadium salts and vanadium compounds in different sample matrices. We will compare various HPLC methods and modes including sample preparation, chelating reagents, mobile phase and detection methods. The comparison will allow us to identify the best analytical HPLC method and mode for measuring vanadium levels and what information such methods provide with regard to speciation and quantitation of the vanadium compounds.  相似文献   

3.
The influence of changes in coordination number, interatomic distances, and oxidation state on the intensity and centroid position of the Fourier transform (FT) of the atomic X-ray absorption fine structure (AXAFS) peak of vanadium oxide bulk model compounds and alumina-supported vanadium oxide clusters has been investigated. Using Na3VO4 and V2O5 as model compounds, it has been shown that the nearest neighbour shells have a pronounced influence on the AXAFS intensity; specifically, a 40 % decrease in intensity was observed between these two compounds. Secondly, the influence of partial reduction of the vanadium oxide species has been determined; this led to a 50 % decrease in the AXAFS intensity and to an increase in the centroid position. Furthermore, the influence of the vanadium oxide loading has been assessed. A non-linear relationship between the vanadium oxide loading and the AXAFS intensity has been found, indicating that the AXAFS intensity is sensitive to the formation of V-O-V bridging bonds between the vanadium VO4 clusters. The results show that AXAFS can be used to probe the relative energy level of the vanadium valence orbitals.  相似文献   

4.
A sensitive and simultaneous spectrophotometric flow injection method for the determination of vanadium(IV) and vanadium(V) is proposed. The method is based on the effect of ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) and diphosphate on the conditional redox potential of iron(III)/iron(II) system. A four-channel flow system is assembled. In this flow system, diluted hydrochloric acid (1.0 x 10(-2) mol dm(-3)) as a carrier for standard/sample, acetate buffer (pH 5.5) as a carrier for diphosphate solution, an equimolar mixed solution of iron(III) and iron(II) and a TPTZ solution are delivered, so that the baseline absorbance can be established by forming a constant amount of iron(II)-TPTZ complex (lambda(max) = 593 nm). Vanadium(IV) and/or vanadium(V) (400 microL) and diphosphate (200 microL) solutions are simultaneously introduced into the flow system; in this system the diphosphate solution passes through a delay coil. The potential of the iron(III)/iron(II) system increases in the presence of TPTZ, and therefore vanadium(IV) is easily oxidized by iron(III) to vanadium(V) to produce an iron(II)-TPTZ complex (a positive peak for vanadium(IV) appears). On the other hand, the potential of the redox system decreases in the presence of diphosphate, so that vanadium(V) can be easily reduced by iron(II) to vanadium(IV). In this case, the amount of iron(II) decreases according to the amount of vanadium(V). As a result, the produced iron(II)-TPTZ complex decreases (a negative peak for vanadium(V) appears). In this manner, two peaks for vanadium(IV) and vanadium(V) can be alternately obtained. The limits of detection (S/N = 3) are 1.98 x 10(-7) and 2.97 x 10(-7) mol dm(-3) for vanadium(IV) and vanadium(V), respectively. The method is applied to the simultaneous determination of vanadium(IV) and vanadium(V) in commercial bottled mineral water samples.  相似文献   

5.
Acid-site catalyzed decomposition of isopropylamine was followed in a simultaneous DSC–TGA analyzer. USY zeolite samples with and without vanadium were studied. Results show that acid sites number decreases linearly with vanadium concentration in zeolite indicating that vanadium neutralizes acid sites on catalyst and the metal is able to move on the surface of the solid. The neutralizing species probably contain only one vanadium atom. The reaction enthalpy plus desorption heat of the products show that vanadium preferentially neutralizes the strongest acid sites on the zeolite. The application of the simultaneous DSC–TGA technique to quantify Brønsted acid sites on solids by this reaction is novel.  相似文献   

6.
莫来石的低温合成与结构研究   总被引:8,自引:0,他引:8  
通过在高岭土中引入质量分数为1%~5%的钒以后,在700℃左右的较低温度下观察到莫来石相的生成,并结合酸、碱抽提反应过程制得较纯的莫来石.进一步研究了低温莫来石点阵参数的测定方法,发现低温钒-莫来石的晶胞体积比常规的高温莫来石大,表明钒进入了莫来石的骨架结构.另外,低温莫来石的形成动力学可表述为钒-高岭石低温共熔体迁移过程.  相似文献   

7.
To determine if a correlation exists between mercury concentrations in lichens and wood from tree cores, tree core and lichen samples were taken from sites under mercury advisories and analyzed for mercury using a Bacharach 50B Mercury Analyzer System employing the Manual Cold Vapor Atomic Absorption EPA method 7471A. Wood from tree cores was dated using tree ring data. Wood samples from the cores were analyzed for various depths in the tree core (periods of time) to determine if variations occur throughout the cores. Preliminary data indicate that a strong correlation exists between mercury concentrations in tree core and lichen samples. Samples were analyzed for the 6-month period of summer 2003–winter 2004. A correlation coefficient of 0.882 was found between the tree core and lichen data sets. The derived correlations were used to estimate concentrations of mercury in tree rings for sites in lichen samples which were previously analyzed. These predicted values compared favorably to recently determined concentrations of Hg in tree cores. The strong correlation between lichen and tree core Hg concentrations suggests similar uptake mechanism for the two types of biota.  相似文献   

8.
The influence of Li-doping on the mixed-valent vanadium oxide nanotubes has been investigated using electron energy loss spectroscopy. In particular, the electron diffraction profiles and the vanadium L excitation edges have been studied. We observe that the structure of the vanadium oxide nanotubes is stable against electron transfer upon Li-doping. Excitations at the vanadium L edges show features which are associated with a reduction of the vanadium valency.  相似文献   

9.
A spectrophotometric determination of vanadium as vanadium(IV) pyridine thiocyanate is described. The blue complex is formed in acidic aqueous solution and extracted into pyridine-chloroform. Absorbance is measured at 7.40 mμ. The range of best accuracy for 1-cm cells is from about 80 to 240 μg of vanadium per ml, and sensitivity is 0.4 μg of vanadium per cm2 at 7.40 mμ. The vanadium may be present initially as vanadium(IV) or vanadium(V), which is reduced to vanadium(IV) by the large excess of thiocyanate ion added. Several elements interfere in the determination ; a separation procedure involving mercury cathode electrolysis is suggested.  相似文献   

10.
Preliminary microcalorimetric studies have been performed to analyse the response of a whole epiphytic lichen tissue (Evernia prunastri) to 2-chlorophenol (2Cl-), a pollutant of oil mill waste-water, in order to evaluate whether the tissue might be used to assess the toxic characteristics of polluted waters. The obtained results (lichen viability expressed in hours, enthalpy variations for the 2Cl-/lichen interactions) were used to create a lichen-based biosensor that uses an amperometric oxygen electrode (a Clark electrode) as a transducer. The lichen catalyses aromatic ring cleavage (via pyrocatechase enzymes present in the lichen), and transforms aromatic substances like 2Cl- into muconic acid (C6H6O4). Following a full electroanalytical characterisation, the performance of the proposed lichen biosensor was compared to that of a biosensor based on Pseudomonas putida cells, which was originally constructed to monitor benzene in different matrices (water, air, petrol and oil) and was tested in our laboratory previously.  相似文献   

11.
Slab-gel electrophoresis has been applied to the speciation of vanadium in serum. The electrophoresis separation is an adaptation of the blue native polyacrylamide gel electrophoresis separation necessary to ensure the stability of the vanadium-protein complex; Coomassie blue was used to shift the charges of the proteins and to stabilize the vanadium complex. The detection of the vanadium species was made possible by the use of the (48)V radiotracer and the phosphor-screen technology. The method was first developed using transferrin, incubated with (48)V, as a model. After it was proved that the vanadium-transferrin complex was stable during separation, the method was validated by separating serum incubated with (48)V. The efficiency of the separation was assessed according to two parameters: resolution and conservation of the species. First, the resolution of the separation was as expected from a native separation. Second, the release of free vanadium from the transferrin complex, which was the main vanadium species expected, was negligible, which proves that the species remain intact during separation. In accordance with the literature, it was found that vanadium binds to transferrin in incubated serum at these low concentrations.  相似文献   

12.
Preparation of dispersed transition metal oxides catalyst with low oxidation state still remains a challenging task in heterogeneous catalysis.In this study,vanadium oxides supported on zeolite SBA-15 have been prepared under hydrothermal condition using V 2 O 5 and oxalic acid as sources of vanadium and reductant,respectively.The structures of samples,especially the oxidation state of vanadium,and the surface distribution of vanadium oxide species,have been thoroughly characterized using various techniques,including N 2-physisorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),UV-visible spectra(UV-Vis) and UV-visible-near infrared spectra(UV-Vis-NIR).It is found that the majority of supported vanadium was in the form of vanadium(IV) oxide species with the low valence of vanadium.By adjusting hydrothermal treatment time,the surface distribution of vanadium(IV) oxide species can be tuned from vanadium(IV) oxide cluster to crystallites.These materials have been tested in the hydroxylation of benzene to phenol in liquid-phase with molecular oxygen in the absence of reductant.The catalyst exhibits high selectivity for phenol(61%) at benzene conversion of 4.6%,which is a relatively good result in comparison with other studies employing molecular oxygen as the oxidant.  相似文献   

13.
The effect of the modification of a solid support with 8-hydroxyquinoline (HQ) and 8-hydroxyquinoline-5-sulfonic acid (HQ-SFA) on analytical characteristics of the reaction of vanadium(V) with 4-(2-pyridylazo)resorcinol (PAR) on a solid phase was studied for polyacrylonitrile fiber filled with the AV-17 anion exchanger. Diffuse reflection spectra of the initial and modified supports and of vanadium(V) complexes of PAR on these supports were recorded. It was found that vanadium reacts with PAR on modified supports only in acid solutions. The conditions for the adsorption of vanadium and the dependences of the analytical signal on the acidity of the PAR solution and on the concentration of the modifier on the support were determined. The limits of vanadium detection by the reaction with PAR were calculated (0.5 and 1 ng/mL for AV-17-HQ and AV-17-HQ-SFA, respectively). The selectivity of the reaction of vanadium with PAR on modified supports was estimated with respect to copper, aluminum, iron(III), and zinc. It was found that the modification of the support with HQ and HQ-SFA impairs the analytical characteristics of the reaction of vanadium with PAR on the solid phase and that the use of modified supports for the color reaction of vanadium with PAR is inappropriat  相似文献   

14.
Detailed knowledge of the electronic structure of vanadium oxide clusters provides the basis for understanding and tuning their significant catalytic properties. However, already for the simple four‐atom V2O2 molecule, there are contradictory reports in the literature regarding the electronic ground state and a possible vanadium–vanadium bond. We herein show through a combination of experimental (matrix isolation) studies and theoretical results that there is a multiple vanadium–vanadium bond in this benchmark vanadium oxide molecule.  相似文献   

15.
Summary Hydrotreating (HDT) and hydrodesulfuration (HDS) using an FCC feed were carried out at 673-748 K and 50 MPa total pressure. The effect of vanadium impregnated on a NiMo catalyst supported on sepiolite for HDT and HDS reactions was studied. A commercial NiMo/Al2O3 catalyst was used as reference. The hydrotreating conversions (wt.% HDT) is defined here as the net hydrotreating conversion into products boiling below 653 K. The results were compared with an accelerated ageing test using the catalysts on a FCC feed, with vanadium in the form of naphthenate (2000 ppm of V) added to rapidly deactivate catalysts via metal deposition. The results indicate that vanadium affects more the catalyst supported on sepiolite that the commercial catalyst. Also, at our reaction conditions, the effect of vanadium on sepiolite catalyst is similar, to those used with vanadium impregnated on the catalyst or on the catalyst where the vanadium in naphthenate form was added to FCC feed.  相似文献   

16.
VOx/SBA-15催化剂上甲苯气相部分氧化   总被引:1,自引:0,他引:1  
采用等体积浸渍法制备了不同负载量的VOx/SBA-15催化剂。UV-Vis和H2-TPR等表征结果表明,在较低钒负载量下,钒物种的分散程度较高,主要以孤立的VO4 3-以及少量聚合体V-O-V形式存在;钒负载量较高时会有大量的聚合体V-O-V甚至晶相V2O5出现,而且,催化剂的酸性随着钒物种的高度分散而降低。甲苯气相部分氧化反应结果表明,随着钒负载量的提高,苯甲醛的选择性先升后降,CO、CO2等选择性逐渐提高。这是由于催化剂存在大量的聚合体V-O-V和晶相V2O5时,聚集态钒物种表面较多的酸量促使苯甲醛深度氧化。在相同钒负载量下,催化剂VOx/SBA-15的钒物种分散状态优于VOx/MCM-41和VOx/SiO2,从而使得催化剂VOx/SBA-15呈现较高的苯甲醛选择性。  相似文献   

17.
Abstract

It was established with the use of electron and ESR spectroscopic methods that in the presence of sodium sulfate, the extraction of vanadium (IV) with di-2-ethylhexylphosphoric acid takes place by a cation-exchange mechanism giving rise to two complex compounds of vanadium (IV) oxocation with sulfuric and di-2-ethylhexylphosphoric acid anions. The vanadium (IV) oxocation sulfate complex extracted in the solid state was examined with X-ray structural analysis. It was shown that the vanadium (IV) oxocation sulfate complex trihydrate crystallizes in the centrosymmetrical space group to form dimers with bridging sulfate groups.  相似文献   

18.
Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.  相似文献   

19.
韦丹  丁文军  周桔  彭端  李明 《化学进展》2009,21(5):896-902
在糖尿病的治疗研究中,体内和体外的研究表明,钒化合物可以降低I型和II型糖尿病血糖,促进葡萄糖转运和糖原合成,具有“类胰岛素作用”。本文综述了近年来钒化合物在降低和改善糖尿病症状的生物效应及其通过胰岛素信号通路在降糖作用的分子机制的研究进展。  相似文献   

20.
This review describes our recent efforts in the development of chiral dinuclear vanadium complexes that work as dual activation catalysts for the oxidative coupling of 2-naphthols. The dinuclear vanadium(iv) complex (R(a),S,S)- was prepared by complexation of VOSO(4) with the Schiff base derived from (R)-3,3'-diformyl-2,2'-dihydroxy-1,1'-binaphthyl () and (S)-tert-leucine. Since the dinuclear vanadium(iv) complex was found to be readily oxidized to afford a corresponding vanadium(v) species during preparation in air, a new synthetic procedure using VOCl(3) has been applied towards dinuclear vanadium(v) complexes (R(a),S,S)- and (R(a),S,S)-. To the best of our knowledge, (R(a),S,S)-, and show considerably higher catalytic activity than previously reported vanadium complexes for the oxidative coupling of 2-naphthols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号