首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Racemic (+/-)-3,3'-bis(diphenylphosphinyl)-1,1'-dimethyl-2, 2'-biindole (1c) (N-Me-2-BINPO) and (+/-)-3, 3'-bis(diphenylphosphinyl)-1,1'-bis(methoxymethyl)-2,2'-biindole (1d) (N-MOM-2-BINPO) were synthesized in satisfactory yields following a three-step reaction sequence, starting from indole. Resolution of racemic 1c and 1d was achieved through fractional crystallization of their diastereomeric adducts with optically active dibenzoyl tartaric acids, followed by alkaline decomplexation of the diastereomerically pure salts. Their trichlorosilane reduction gave enantiopure phosphines (+)- and (-)-(1a) (N-Me-2-BINP) and (+)- and (-)-(1b) (N-MOM-2-BINP). The electrochemical oxidative potential of 1a and 1b was found to be 0. 52 and 0.60 V, respectively. Both the enantiomers of (1a) were tested as ligands of Ru(II) in asymmetric hydrogenation reactions of alpha- and beta-oxoesters. Reactions were found to be outstandingly fast and enantioselection quite good. Comparative kinetic experiments on the hydrogenation reaction of methyl acetoacetate carried out with 1a, 1c, BINAP, and other biheteroaromatic diphosphines as ligands of Ru(II) demonstrated that all the reactions follow a first-order kinetic. A linear relationship was found between the kinetic constant log and the electrochemical oxidative potential of the diphosphine ligand.  相似文献   

2.
Readily available 2,2',6,6'-tetramethoxy-1,1'-biphenyl was transformed in 14 synthetic steps into the natural product cardinalin 3 using a bidirectional approach. One of the key steps was the formation of the cis-1,3-dimethylnaphtho[2,3-c]pyran ring. (+/-)-1,1'-[6,6'-Diallyl-5,5'-bis(benzyloxy)-1,1',3,3'-tetramethoxy-2,2'-binaphthalene-7,7'-diyl]diethanol was treated with O(2) in the presence of CuCl(2) and catalytic PdCl(2) to afford 5,5'-bis(benzyloxy)-7,7',9,9'-tetramethoxy-1,1',3,3'-tetramethyl-1H,1'H-8,8'-bibenzo[g]isochromene. Hydrogenation of this compound afforded 7,7',9,9'-tetramethoxy-cis-1,3-cis-1',3'-tetramethyl-3,3',4,4'-tetrahydro-1H,1'H-8,8'-bibenzo[g]isochromene-5,5'-diol in quantitative yield, which was converted in 3 steps to cardinalin 3.  相似文献   

3.
Nine Ru(II) complexes containing the conjugated oligothiophene ligands 3,3'-bis(diphenylphosphino)-2,2':5',2'-terthiophene (P(2)T(3)) and 4',3'-bis(diphenylphosphino)-3,3'-dihexyl- 2,2':5',2':5',2':5',2'-pentathiophene (P(2)T(5)) were prepared and characterized. P(2)T(3) and P(2)T(5) bond as tridentate ligands and three of the complexes (1, 2 and 5) form green five-coordinate Ru(II) complexes in solution. Cyclic voltammetry, variable temperature UV-vis spectroscopy and time-resolved transient absorption spectroscopy were used to characterize the electronic properties of the complexes. Increased conjugation in the complexes containing the P(2)T(5) ligand resulted in a lowering of the oxidation potential of the oligothiophene, but electropolymerization was not observed. The electronic spectra were dominated by π-π* transitions. All of the complexes were non-emissive both at room temperature and low temperature, indicating the excited state decays by other, non-radiative pathways. The transient absorption spectrum of complex 7 shows a species with a band at 475 nm and a lifetime of ~100 ns, assigned to a ligand-based triplet state.  相似文献   

4.
Amphiphilic ligands 4,4'-bis(1-adamantyl-aminocarbonyl)-2,2'-bipyridine (L(1)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)ethyl]aminocarbonyl]]-2,2'-bipyridine (L(2)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)propyl]aminocarbonyl]]-2,2'-bipyridine (L(3)), and 4,4'-bis(dodecan-12-ol)-2,2'-bipyridine (L(4)) and their heteroleptic ruthenium(II) complexes of the type [Ru(II)LL(1)(NCS)(2)] (5), [Ru(II)LL(2)(NCS)(2)] (6), [Ru(II)LL(3)(NCS)(2)] (7), and [Ru(II)LL(4)(NCS)(2)] (8) (where L = 4,4'-bis(carboxylic acid)-2,2'-bipyridine) have been synthesized starting from dichloro(p-cymene)ruthenium(II) dimer. All the ligands and the complexes were characterized by analytical, spectroscopic, and electrochemical techniques. The performance of these complexes as charge-transfer photosensitizers in nanocrystalline TiO(2)-based solar cells was studied. When complexes 5-8 anchored onto a 12 + 4 microm thick nanocrystalline TiO(2) films, very efficient sensitization was achieved (85 +/- 5% incident photon-to-current efficiencies in the visible region, using an electrolyte consisting of 0.6 M butylmethylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butyl pyridine in 1:1 acetonitrile + valeronitrile). Under standard AM 1.5 sunlight, the complex 8 yielded a short-circuit photocurrent density of 17 +/- 0.5 mA/cm(2), the open-circuit voltage was 720 +/- 50 mV, and the fill factor was 0.72 +/- 0.05, corresponding to an overall conversion efficiency of 8.8 +/- 0.5%.  相似文献   

5.
The four-step straightforward synthesis of enantiopure (+)- and (-)-2,2',5,5'-tetramethyl-4,4'-bis-(diphenylphoshino)-3,3'-bithiophene (tetraMe-BITIOP), a new C2-symmetry chelating ligand for transition metals, is described, starting from 2,5-dimethylthiophene. The complexes of this electron-rich diphosphine with Ru(II) and Rh(I) were used as catalysts in some homogeneous hydrogenation reactions of prostereogenic carbonyl functions of alpha- and beta-ketoesters, of prostereogenic carbon-carbon double bonds of substituted acrylic acids, and of N-acetylenamino acids. The enantiomeric excesses were found to be excellent in all the experiments and comparable with the best results reported in the literature for the same reactions, carried out under similar experimental conditions, with the metal complexes of the most popular chiral diphosphine ligands as catalysts.  相似文献   

6.
 报道了对烷氧基取代的 MeO-BIPHEP 型手性双膦配体钌配合物催化的β-酮酸酯不对称加氢反应, 考察了反应温度、压力、底物/催化剂摩尔比和溶剂对反应的影响. 结果表明, 在乙醇中该配合物催化 3-丁酮酸乙酯加氢反应的对映选择性达 98.0%,且对含不同取代基的β-酮酸酯均表现出较高的活性和对映选择性.  相似文献   

7.
The preparations of two new phosphinothiophene ligands, 3,3'-bis(diphenylphosphino)-2,2'-bithiophene (dppbt; 1) and 3,3' "-dihexyl-3',3' '-bis(diphenylphosphino)-2,5':2',2' ':5' ',2' "-quaterthiophene (hdppqt; 2) are reported. Oxidation of 1 gives 3,3'-bis(diphenylphosphine oxide)-2,2'-bithiophene (3), and the crystal structure of this compound was determined. Pd(II) and Au(I) complexes of these ligands have been synthesized and characterized. Crystal structures of [(dppbt)PdCl(2)] (1-Pd), [(hdppqt)PdCl(2)] (2-Pd), [(dppbt)(AuCl)(2)] (1-Au), and [(hdppqt)(AuCl)(2)] (2-Au) were obtained. [(dppbt)(AuCl)(2)] crystallized in two solid-state forms; crystals grown from CH(2)Cl(2)/Et(2)O show a gold-gold interaction of 3.3221(4) A, but from CH(2)Cl(2)/toluene, the molecule crystallizes as a toluene adduct (1-Au-tol) and does not show any gold-gold interaction. All the complexes were characterized via UV-vis spectroscopy and cyclic voltammetry, and the effect of the metal on the energy of the pi-pi transition and oxidation potential was determined. These data are correlated to the interannular torsion angles in the oligothienyl groups from the crystal structure studies.  相似文献   

8.
Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2'-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.  相似文献   

9.
研究了钌-双膦-二胺配合物催化剂RuC1_2[(S)-P-Phos]-[(S)-DAIPEN][P-Phos:2,2',6,6'-四甲氧基-4,4'-双(二苯基膦基)-3,3'.二吡啶,DA肫N:1,1.二(4.甲氧苯基).2.异丙基.1,2.乙二胺]催化芳香酮不对称加氢反应的性能,考察了不同的碱、叔丁醇钾浓度、反应溶剂、底物/催化剂摩尔比等因素对反应活性和对映选择性的影响.在苯乙酮、叔丁醇钾、催化剂的摩尔比为1000:20:1,氢气压力为2 MPa,反应温度为30℃时,苯乙酮的转化率和α-苯乙醇的对映选择性(ee)分别达到了100%和88.5%,2'-溴苯乙醇的ee值町达97.1%.  相似文献   

10.
Transient dynamical studies of ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Ru-PZn), osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Os-PZn), ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Ru-PZn-A), osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)2+ bis-hexafluorophosphate (Os-PZn-A), and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-ruthenium(II)-15-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2' '-terpyridine)4+ tetrakis-hexafluorophosphate (Ru-PZn-Ru), and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-osmium(II)-15-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2' '-terpyridine) tetrakis-hexafluorophosphate (Ru-PZn-Os) show that these highly conjugated supermolecular chromophores feature electronically excited states that absorb over broad NIR spectral windows with considerable oscillator strength and manifest lifetimes (1-50 mus) that are extraordinarily long relative to those of classic low band-gap organic materials. The excited-state absorptive domains of these strongly coupled multipigment ensembles can be extensively modulated. For sequential one-photon absorptive processes, these compounds evince large sigmae, sigmae/sigmag, and sigmae - sigmag values. As the combination of all these properties within single chromophoric entities have heretofore lacked precedent within the NIR, these and closely related structures may find particular utility in a variety of technologically important optical-limiting applications.  相似文献   

11.
The syntheses and electrooptic properties of a new family of nonlinear optical chromophores are reported. These species feature an ethyne-elaborated, highly polarizable porphyrinic component and metal polypyridyl complexes that serve as integral donor and acceptor elements. Examples of this structural motif include ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn); osmium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2'-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn); ruthenium(II) [5-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phen-yl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn-A); osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn-A); and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))osmium(II)-15-(4'-ethynyl-(2,2';6',2'-terpyridinyl))-10,20-bis (2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2'-terpyridine)(4+) tetrakis-hexafluorophosphate (Ru-PZn-Os). The frequency dependence of the dynamic hyperpolarizability of these compounds was determined from hyperRayleigh light scattering (HRS) measurements carried out at fundamental incident irradiation wavelengths (lambda(inc)) of 800, 1064, and 1300 nm. These data show that (i) coupled oscillator photophysics and metal-mediated cross-coupling can be exploited to elaborate high beta(0) supermolecules that exhibit significant excited-state electronic communication between their respective pigment building blocks; (ii) high-stability metal polypyridyl compounds constitute an attractive alternative to electron releasing dialkyl- and diarylamino groups, the most commonly used donor moieties in a wide range of established nonlinear optical dyes; (iii) this design strategy enables ready elaboration of chromophores having extraordinarily large dynamic hyperpolarizabilities (beta(lambda) values) at telecommunication relevant wavelengths; and (iv) porphyrin B- and Q-state-derived static hyperpolarizabilities (beta(0) values) can be designed to have the same or opposite sign in these species, thus providing a new means to regulate the magnitude of lambda(inc)-specific dynamic hyperpolarizabilities.  相似文献   

12.
研究了钌-双膦-二胺配合物催化剂RuCl2[(S)-P-Phos]-[(S)-DAIPEN] [P-Phos: 2,2',6,6'-四甲氧基-4,4'-双(二苯基膦基)-3,3'-二吡啶, DAIPEN: 1,1-二(4-甲氧苯基)-2-异丙基-1,2-乙二胺]催化芳香酮不对称加氢反应的性能, 考察了不同的碱、叔丁醇钾浓度、反应溶剂、底物/催化剂摩尔比等因素对反应活性和对映选择性的影响. 在苯乙酮、叔丁醇钾、催化剂的摩尔比为1000:20:1, 氢气压力为2 MPa, 反应温度为30 ℃时, 苯乙酮的转化率和α-苯乙醇的对映选择性(ee)分别达到了100%和88.5%, 2'-溴苯乙醇的ee 值可达97.1%.  相似文献   

13.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

14.
The synthesis of two Ru chloro complexes, Ru(III)Cl(3)(bpea), 1, and cis-fac-Delta-[Ru(II)Cl{(R)-(bpea)}{(S)-(BINAP)}](BF(4)), cis-fac-Delta-(R)-(S)-2, (bpea = N,N-bis(2-pyridylmethyl)ethylamine; (S)-BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), is described. Complex 2 is characterized in solution through UV-vis, cyclic voltammetry (CV), and 1D and 2D NMR spectroscopy. X-ray diffraction analysis indicates that in the solid state it possesses the same structure as in solution, as expected for a low-spin d(6) Ru(II)-type complex. The molecular structure of cis-fac-Delta-(R)-(S)-2, consists of a nonsymmetric complex, where the Ru metal center has a significantly distorted octahedral-type coordination because of the bulkiness of the (S)-BINAP ligand. cis-fac-Delta-(R)-(S)-2 has a remarkable catalytic performance at P = 6.8 atm of H2 and T = 70 degrees C toward the hydrogenation of prochiral double bonds both from efficiency and from stereoselectivity viewpoints. As an example, prochiral olefins of technological interest such as dimethyl itaconate, methyl 2-acetamidoacrylate or methyl 2-acetamidocinnamate are catalytically hydrogenated by cis-fac-Delta-(R)-(S)-2, with conversions higher than 99.9% and ee > 99. Furthermore, cis-fac-Delta-(R)-(S)-2, also catalyzes the selective hydrogenation of beta-keto esters, although the reaction rates are lower than those found with the former substrates.  相似文献   

15.
The mechanism of asymmetric hydrogenation of alpha-(acylamino)acrylic esters with Ru(CH(3)COO)(2)[(S)-binap] (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), giving the S saturated products in >90% ee, has been investigated by means of a kinetic study, deuterium labeling experiments, isotope effect measurements, and NMR and X-ray analysis of certain Ru complexes. The hydrogenation in methanol under a low H2 pressure proceeds via a monohydride-unsaturate mechanism that involves the initial RuH formation followed by a reaction with an olefinic substrate. The migratory insertion in the enamide-RuH chelate complex occurs reversibly and endergonically in an exo manner, giving a five-membered metallacycle intermediate. The cleavage of the Ru-C bond is achieved with either H2 (major) or CH3OH (minor). Both of the pathways result in overall cis hydrogenation products. The hydrogen at C3 is mainly from an H2 molecule, and the C2 hydrogen is from another H2 or protic CH3OH. The major S and minor R enantiomers are produced via the same mechanism involving diastereomeric intermediates. The turnover rate is limited by the step of hydrogenolysis of a half-hydrogenated metallacyclic intermediate. The participation of two different hydrogen donor molecules is in contrast to the pairwise dihydrogenation using a single H2 molecule in the RhI-catalyzed reaction which occurs via a dihydride mechanism. In addition, the sense of asymmetric induction is opposite to that observed with S-BINAP-RhI catalysts. The origin of this phenomenon is interpreted in terms of stereocomplementary models of the enamide/metal chelate complexes. A series of model stoichiometric reactions mimicking the catalytic steps has indicated that most NMR-observable Ru complexes are not directly involved in the catalytic hydrogenation but are reservoirs of real catalytic complexes or even side products that retard the reaction.  相似文献   

16.
The photo-hydrogen-evolving activity (activity to enhance the photochemical EDTA-reduction of water into molecular hydrogen) was evaluated for three different Ru(II)Pt(II) dimers with a general formula of [(bpy)2Ru(micro-bridge)PtCl2]2+(bpy = 2,2'-bipyridine; bridge = 4,4'-bis(N-(3-aminopropyl)carbamoyl)-2,2'-bipyridine (L1), 2,3-bis(2-pyridyl)pyrazine (L2), and 4,4'-bis(N-(4-pyridyl)methylcarbamoyl)-2,2'-bipyridine (L3); EDTA = ethylenediaminetetraacetic acid disodium salt). A new Ru(II)Pt(II) complex, [(bpy)2Ru(micro-L3)PtCl2]2+, was synthesized and characterized. It was confirmed that all three compounds are ineffective towards photochemical H2 production. In each case, an acetate-buffer solution (pH = 5) containing the Ru(II)Pt(II) dimer and EDTA was photolysed using a 350-W Xe lamp under an Ar atmosphere, during which the amount of H2 evolved was analysed by gas chromatography. Additional photolysis experiments were carried out by adding [Ru(bpy)3]2+ and methylviologen (N,N'-dimethyl-4,4'-bipyridinium) to the photolysis solutions described above to test the H2-evolving activity of the Pt(II) unit involved in these Ru(II)Pt(II) dimers. As a result, the Pt(II) units involved in the L1 and L2 compounds were found to be active as an H2-evolving catalyst, while that of the L3 compound was found to show no activity at all. The extent of intramolecular electron-transfer quenching from the 3MLCT excited state of the [Ru(bpy)3]2+ derivative to the tethering Pt(II) catalyst centre was investigated by comparison of the luminescence spectra of these compounds, together with the related compounds. The results showed that the quenching of the 3MLCT luminescence is not at all enhanced in either the L1 or the L3 compounds. On the other hand, the L2 compound is strongly quenched as previously reported. In addition to the above studies, the H2-evolving activity of some Pt(II) monomers, cis-PtCl2(NH3)2, PtCl2(en)(en = ethylenediamine), cis-PtCl2(4-methylpyridine)2, PtCl2(2,2'-bipyrimidine), PtCl2(4,4'-dicarboxy-2,2'-bipyridine), and [PtCl(terpy)]+(terpy = 2,2':6',2'-terpyridine), were similarly investigated in the presence of EDTA, [Ru(bpy)3]2+ and methylviologen, since they were regarded as structural analogues of the Pt(II) units involved in the L1-L3 compounds. The compounds having a cis-Pt(II)Cl2 unit were generally found to show high H2-evolving activity. This was interpreted in terms of the ligation of negatively charged chloride anions leading to the destabilization of the Pt(II) dz2 orbital responsible for the hydrogenic activation. Importantly, cis-PtCl2(4-methylpyridine)2 exhibited relatively high activity as an H2-evolving catalyst, suggesting the importance of the flexible rotation of the pyridyl ligands for efficient hydrogenic activation at the axial site of the Pt(II) ion. The DFT calculations also showed the validity of the structure-activity relationship discussed above for the L3 compound.  相似文献   

17.
Syntheses, optical spectroscopy, potentiometric studies, and electronic structural calculations are reported for two classes of conjugated (porphinato)metal oligomers that feature a meso-to-meso ethyne-bridged linkage topology. One set of these systems, bis[(5,5'-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethyne (DD), 5,15-bis[[5'-10',20'-bis[3,5-di(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethynyl]-10,20-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II) (DDD), and 5,15-bis[[15' '-(5'-10',20'-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5' '-10' ',20' '-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II)]ethyne]ethynyl]-10,20-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II) (DDDDD), constitute highly soluble analogues of previously studied examples of this structural motif having simple 10,20-diaryl substituents, while a corresponding set of conjugated oligomers, [(5-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5'-15'-ethynyl-10',20'-bis[10,20-bis(heptafluoropropyl)porphinato)zinc(II)]ethyne (DA), 5,15-bis[[5'-10',20'-bis[3,5-di(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethynyl]-10,20-bis(heptafluoropropyl)porphinato]zinc(II) (DAD), and 5,15-bis[[15' '-(5'-10',20'-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5' '-(10' ',20' '-bis(heptafluoropropyl)porphinato)zinc(II)]ethyne]ethynyl]-10,20-bis[3,5-di(9-methoxy-1,4,7-trioxanonyl)phenyl]porphinato)zinc(II) (DADAD), features alternating electron-rich and electron-poor (porphinato)zinc(II) units. Electrooptic and computational data for these species demonstrate that it is possible to engineer conjugated oligomeric structures that possess highly delocalized singlet (S1) excited states yet manifest apparent one-electron oxidation and reduction potentials (E1/20/+ and E1/2-/0 values) that are essentially invariant with respect to those elucidated for their constituent monomeric precursors.  相似文献   

18.
The construction of chirally twisted porphyrin-based molecular capsule 6 and polymeric capsule 8 was investigated by means of scanning electron microscopy (SEM) and (1)H NMR, UV-visible, and CD spectroscopic observations. Molecular capsule 6 and polymeric capsule 8 were constructed by the reaction of chiral cis-Pd(II) complex 4 bearing a (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) ligand with porphyrin 1 bearing four pyridyl groups and porphyrin 2 bearing eight pyridyl groups, respectively. The peak-splitting pattern of the beta-pyrrole protons in the (1)H NMR spectrum and the specific CD spectral pattern bearing an exciton coupling band indicate that both molecular capsule 6 and polymeric capsule 8 are chirally twisted. Moreover, it was found that the CD intensity of the polymeric capsule plotted against [4]/([4] + [3]) shows a sigmoidal curvature, reflecting a unique cooperativity among the ligand groups; that is, the ligand existing in excess over the other dominates the twisting direction. These results consistently demonstrate that "chirality" in these molecular assembly systems is conveniently controlled by the use of chiral ligands.  相似文献   

19.
The compound fac-[Ru((R)-BINAP)(H)(2-PrOH)3]+ (6) (BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl) reacts with (R,R)-dpen (dpen = 1,2-diphenylethylenediamine) under H2 at -60 degrees C in 2-PrOH-d8/CD2Cl2 to generate the cationic dihydrogen putative intermediate trans-[Ru((R)-BINAP)(H)(eta2-H2)((R,R)-dpen)]+ (2') without H-D exchange between the hydrogen ligands and the solvent. A 1H NMR study concludes that the dihydrogen ligand in 2' does not protonate 2-PrOH to a catalytically significant extent, and that 2' requires an added base or hydride source to be an active catalyst.  相似文献   

20.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号