首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

2.
本研究以共沉淀法制备的α-Fe2O3催化剂为前驱体,通过调变碳化温度和碳化时间制备了不同物相组成的系列催化剂,采用XRD、M?ssbauer谱、XPS和Raman光谱等技术考察了催化剂体相和表面物相组成,在此基础上研究了不同条件下(不同CO转化率和H2O分压)催化剂的物相组成与催化剂性能之间的关系,重点探究了费托合成条件下CO2生成的活性相。结果表明,升高碳化温度和延长碳化时间有利于Fe3O4向碳化铁转变。在典型的费托合成条件下,催化剂的活性受到碳化铁含量和积炭程度的共同影响。当H2O分压较低时,动力学因素限制了水煤气变换(WGS)反应的进行,CO2选择性仅受CO转化率的影响,Fe3O4含量变化对CO2选择性无明显影响;而在较高的H2O分压下,随着催化剂中Fe3O4含量增加,CO  相似文献   

3.
刘军辉  宋亚坤  宋春山  郭新闻 《应用化学》2020,37(10):1099-1111
CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。  相似文献   

4.
长链线性α-烯烃(linear α-olefins, LAOs)是重要的化工原料,目前,主要通过石油化工路线获得。随着全球温升影响加剧,CO2控制与资源化利用技术研究受到持续关注。费托合成(Fischer-Tropsch synthesis, FTS)反应产生一定比例的LAOs,提供了制取LAOs可供选择的技术路线。本综述围绕CO2加氢制LAOs过程,结合其反应途径,分析了Fe基催化剂的研究进展,包括助催化剂和载体的作用,阐述了Fe基催化剂上链增长机理和影响LAOs选择性的关键因素,总结了该反应面临的挑战、可能的解决思路,对高效Fe基催化剂研究进行了展望。  相似文献   

5.
大气中CO2浓度增加导致的温室效应以及化石燃料的匮乏正日益受到世界范围的关注. 由于CO2较强的惰性以及较高 C-C 偶联能垒, 迄今为止大部分研究都集中在CO2催化加氢制备各种 C1 化学品 (如 CH4, CH3OH, CO 等), 鲜有研究关注合成液态燃料 (C5+碳氢化合物). 目前,CO2加氢直接合成烃类主要通过CO2基费托合成反应 (CO2-FTS) 实现, 即先通过逆水煤气变换反应 (RWGS) 将CO2还原成 CO, 随后 CO 通过传统费托反应 (FTS) 加氢生成烃类化合物. 在两种工业化FTS 催化剂 (Fe 和 Co 基催化剂) 中, 钴基催化剂具有更高的反应活性和链增长能力, 以及较高的机械强度和稳定性. 然而,由于CO2的惰性, 造成催化剂表面物种的加氢程度更高, 使得甲烷更容易生成. 因而, 高反应活性、高选择性催化剂的开发是实现该过程的关键.本文采用沉积沉淀法制备了一系列双金属 CoCu/TiO2催化剂, 再通过初湿浸渍法对其进行碱金属助剂 (Li, Na, K, Rb和 Cs) 改性, 并用多种表征手段系统研究了碱金属助剂对催化剂物化性质及其催化CO2加氢制备长链烃反应的影响. 结果表明, 碱金属的加入对催化剂织构性质影响不大, 它们在催化剂表面发生富集, 且富集程度随碱金属原子序数的增加而降低. 另外, 碱金属的加入增强了CO2的吸附, 其中, Na 改性的 CoCu/TiO2催化剂的碱性最强; 同时还降低了 H2的脱附量,尤以 K, Rb 和 Cs 改性的催化剂为甚.在 250 oC, 5 MPa, 空速 3000 mL·gcat-1·h-1和 H2/CO2= 3 的反应条件下, 对不同碱金属助剂改性的催化剂进行评价. 结果表明, 不加助剂的 CoCu/TiO2催化剂上CO2转化率高达 23.1%, 但产物主要是 CH4, 此时CO2在 Co 活性中心上直接发生甲烷化反应; 碱金属助剂的引入显著抑制了 CH4的生成, 提高了长链烃的选择性, 但同时也降低了CO2转化率, 并且随着碱金属原子序数增大呈现先下降后上升的趋势, 表明合适的碱性强度可以更好地改性催化剂性能. 其中, Na 助剂改性的CoCu/TiO2催化剂的碱性最强, 且 H2的脱附量降低幅度较小, 因此, 该催化剂具有最高的 C5+烃类收率, 达到 5.4%; 同时CO2转化率为 18.4%, 烃类产物中 C5+烃类选择性为 42.1%. Na 助剂改性的 CoCu/TiO2催化剂还展现了良好的催化稳定性,反应 200 h 后,CO2转化率和 C5+选择性分别保持 18% 和 40%. 基于碱金属助剂对催化剂物化性质与反应性能的调变规律,可进一步指导CO2加氢直接合成长链碳催化剂的设计与合成.  相似文献   

6.
以共沉淀法制备FeAl母体,采用浸渍法添加Zn、K和Cu助剂制成催化剂,利用低温N2物理吸附、XRD、H2-TPR等手段对FeAl母体和催化剂进行表征,并用固定床反应器考察它们的CO2加氢反应性能。XRD结果表明,加入Al助剂、并采用无水乙醇洗涤沉淀能促进酌-Fe2O3晶相生成,其中,Al2O3/Fe2O3质量比为10%的母体具有最强的酌-Fe2O3衍射峰;加入Al使得母体中的a-Fe2O3晶粒粒径变小,引起比表面积明显增大;浸渍助剂过程没有改变上述两种效应。母体比表面积增大提高了助剂Cu的分散度,促进了催化剂还原,但酌-Fe2O3晶相的生成才是催化剂的CO2加氢反应活性被提高的主要原因。  相似文献   

7.
考察了ZrO2、Ru或Pt助剂对Co/Al2O3催化剂结构及浆态床费托合成反应性能的影响。实验结果表明,添加ZrO2助剂可阻止或降低难还原铝酸钴的形成、促进催化剂的还原、提高Co/Al2O3催化剂对费托合成反应的催化活性、降低甲烷选择性并提高C5+烃选择性。H2-TPR表征结果表明,少量Ru或Pt助剂均能降低Co-ZrO2/Al2O3催化剂中钴物种还原温度(Co3O4→CoO和CoO→Co0),提高催化剂的还原度,催化剂呈现出良好的CO加氢反应活性。此外,催化剂组分间浸渍次序对费托合成反应性能有重要影响,载体γ-Al2O3先浸渍Zr组分,可有效抑制难还原化合物形成;Co、Ru组分共浸渍加强了Co和Ru组分密切接触程度,更利于钴物种的还原;Co、Pt组分依次浸渍更利于活性组分的均匀分布,催化剂具有最佳的费托合成反应性能。  相似文献   

8.
随着二氧化碳(CO2)排放量的不断增加, 全球变暖和气候变化的加剧对人类的生存环境产生了巨大的影响. CO2作为廉价、 可再生的碳氧资源, 将其转化为高附加值化学品是绿色化学及能源领域的重要研究课题之一, 受到广泛关注. Pd基催化剂由于具有优异的加氢能力以及良好的抗烧结、 抗毒化性能, 作为CO2催化转化最有前途的催化剂被广泛应用和研究. 本文主要对Pd基催化剂上CO2加氢制备HCOOH, CO, CH4和甲醇等小分子能源化合物的研究进展进行综合评述, 重点关注Pd基催化剂上CO2分子的吸附/活化位点、 催化剂的金属-载体强相互作用及表界面组成等对催化剂活性和选择性的影响以及催化反应机理.  相似文献   

9.
将二氧化碳(CO2)催化加氢转化为具有高附加值的烃类化合物,既可减缓大气中CO2浓度的攀升速度,又符合可持续发展战略,对环境和社会均具有重要意义。本文综述了Fe基催化剂上CO2加氢制C2+烃的研究进展,着重介绍了反应路径及机理、催化剂研制及反应器设计,展望了CO2制烃的研究前景。  相似文献   

10.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法.直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势.综述了近年来Fe基催化剂、 Co基催化剂在CO直接制备低碳烯烃中的研究进展.分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、 Co基催化剂的低碳烯烃选择性.  相似文献   

11.
预处理Fe基催化剂CO加氢合成低碳烯烃选择性影响研究   总被引:1,自引:0,他引:1  
研究了Fe2O3在CO和H2气氛下预处理对催化剂物相、表面组成和性质的影响及CO加氢合成低碳烯烃反应行为。结果表明,300℃ H2预处理后催化剂主要物相结构为Fe3O4和α-Fe,250℃ CO预处理后主要物相为Fe3O4,随着CO预处理温度的升高,有碳化铁生成。表面碳化物含量随着CO预处理温度的升高而增加。CO较H2预处理表面碱性增强,CO2和CO吸附显著增加,随着预处理时间的延长,表面积炭降低了CO2和CO吸附。经CO预处理的催化剂具有较高的烯烃选择性,H2预处理的催化剂烯烃选择性相对较低。  相似文献   

12.
CO2加氢合成甲醇催化反应中CO的作用   总被引:1,自引:0,他引:1  
研究了铜基催化剂上CO2加氢合成甲醇反应中掺人CO的作用,结果表明,在原料中添加少量CO,甲醇的选择性提高38%,收率提高25%;TPD-MS和TPSR-MS结果表明,CO能抑制催化剂表面起逆水汽变换作用的活性位对CO2的吸附,从而提高了CO2加氢合成甲醇的选抒性.  相似文献   

13.
Rh/NaY催化剂上合成气选择一步生成乙酸   总被引:1,自引:0,他引:1  
在合成气(CO+H2)催化转化反应中,含适当助剂(如Mn、Fe、V等)的负载型Rh催化剂能够有选择地催化生成C2含氧化合物,某些氧化物载体本身也会成为Rh催化剂的助剂[1~3].  相似文献   

14.
将CO2作为可利用的碳资源催化转化为高附加值化学品或液体燃料对于节能减排和碳资源的循环利用具有重要意义。由于CO2分子的化学惰性及高的C–C键耦合能垒,导致CO2的选择性活化及可控转化极具挑战。近年来,随着研究的不断深入及串联催化体系的构建,世界各国研究者在CO2催化加氢制备高附加值烃类方面取得了突破性的研究进展。然而,在串联催化过程中,Fe基催化剂或金属氧化物与分子筛间的协同匹配、活性组分间的组装方式、分子筛的孔道结构及酸性、以及反应条件及气氛均对CO2加氢的产物分布影响显著。有鉴于此,本综述针对CO2加氢制备高附加值烃(低碳烯烃、异构烷烃、汽油及芳烃)的串联催化反应体系,重点介绍串联催化剂上影响CO2活化、转化及目标产物生成的关键因素以及串联催化剂的稳定性,并在此基础上对CO2催化加氢的未来和前景进行总结和展望。  相似文献   

15.
采用低温N2吸附、XRD、MES、CO-TPR和H2-DTG研究了Zn(100 gFe/x gZn, x=7~100)助剂对 Fischer-Tropsch (F-T) 合成Fe基催化剂的织构性质、还原行为以及相变结构的影响;在H2/CO=2.0、260 ℃、1.5 MPa和4000 mL/(g·h) 条件下在固定床反应器上考察了Zn助剂含量对Fe基催化剂F-T合成反应活性、烃产物选择性和运行稳定性的影响。研究结果表明,随着Zn含量的增加,氧化态催化剂的物相由α-Fe2O3和ZnFe2O4逐渐向ZnFe2O4和ZnO转变,ZnFe2O4在催化剂中优先生成,只有在超出其计量比1∶2之后才有ZnO出现。由于ZnFe2O4较为稳定,能够促进催化剂中Fe物相的分散,导致比表面积增加。在还原和反应态催化剂中,ZnFe2O4一方面抑制催化剂的过度还原和碳化;另一方面表现为稳定活性相铁碳化物。催化剂的F-T反应性能评价结果表明,纯铁催化剂由于铁碳化物氧化而迅速失活,而Zn助剂催化剂却由于ZnFe2O4的稳定作用,活性较为稳定。同时,由于催化剂在反应初相变的影响,导致Zn助剂催化剂的初始烯烃选择性随着Zn含量的增加而增加,在相态稳定之后选择性趋于一致。  相似文献   

16.
正CO加氢高温高压制备高级烃类是一种重要的煤间接液化技术(又称费托反应),被认为是一种替代石油、实现煤碳能源洁净高附加值利用的重要途径,受到学术界和工业界的极大关注~1。常用的费托合成催化剂有Ru、Co、Fe基等催化剂~2。Ni基催化剂虽然被广泛应用于加氢化工反应,但是由于其C―C偶联效率低,趋于催化生成低值的甲烷,因此Ni基催化剂又被称为甲烷化催化剂~3。当前,基于费托反应发展一条清洁、绿色的新型能  相似文献   

17.
等离子体-催化剂耦合作用下CO2的甲烷化研究   总被引:3,自引:0,他引:3  
常温常压下,利用脉冲电晕等离子体与Ni/γ-Al2O3催化剂协同作用CO2加氢转化生成甲烷,考察了催化剂担载量、放电参数、工艺参数等对反应的影响,并探讨了其反应机理.结果表明,在等离子体与催化剂协同作用下,CO2加氢生成CH4,CO2转化率在催化剂一定担载量范围内随担载量的增加而增加;脉冲电压峰值、重复频率、进气方式、空速等对反应有重要影响;相同条件下,等离子体-催化法优于化学催化法.  相似文献   

18.
CO加氢制备低碳烯烃是非石油路线获得烯烃的重要反应,其反应路线有直接法和间接法。直接法制备低碳烯烃具有反应路线短、能源利用率高、经济高效等优势。综述了近年来Fe基催化剂、Co基催化剂在CO直接制备低碳烯烃中的研究进展。分析认为:费托合成过程产物选择性遵循Anderson-Schulz-Flory(ASF)分布规律,助剂和载体的使用一定程度提高Fe基、Co基催化剂的低碳烯烃选择性。  相似文献   

19.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

20.
大气中CO_2浓度增加导致的温室效应以及化石燃料的匮乏正日益受到世界范围的关注.由于CO_2较强的惰性以及较高C–C偶联能垒,迄今为止大部分研究都集中在CO_2催化加氢制备各种C1化学品(如CH_4,CH3OH,CO等),鲜有研究关注合成液态燃料(C_(5+)碳氢化合物).目前,CO_2加氢直接合成烃类主要通过CO_2基费托合成反应(CO_2-FTS)实现,即先通过逆水煤气变换反应(RWGS)将CO_2还原成CO,随后CO通过传统费托反应(FTS)加氢生成烃类化合物.在两种工业化FTS催化剂(Fe和Co基催化剂)中,钴基催化剂具有更高的反应活性和链增长能力,以及较高的机械强度和稳定性.然而,由于CO_2的惰性,造成催化剂表面物种的加氢程度更高,使得甲烷更容易生成.因而,高反应活性、高选择性催化剂的开发是实现该过程的关键.本文采用沉积沉淀法制备了一系列双金属CoCu/TiO_2催化剂,再通过初湿浸渍法对其进行碱金属助剂(Li,Na,K,Rb和Cs)改性,并用多种表征手段系统研究了碱金属助剂对催化剂物化性质及其催化CO_2加氢制备长链烃反应的影响.结果表明,碱金属的加入对催化剂织构性质影响不大,它们在催化剂表面发生富集,且富集程度随碱金属原子序数的增加而降低.另外,碱金属的加入增强了CO_2的吸附,其中,Na改性的CoCu/TiO_2催化剂的碱性最强;同时还降低了H_2的脱附量,尤以K,Rb和Cs改性的催化剂为甚.在250 ℃,5 MPa,空速3000 mL·g_(cat)~(–1)·h~(–1)和H_2/CO_2=3的反应条件下,对不同碱金属助剂改性的催化剂进行评价.结果表明,不加助剂的CoCu/TiO_2催化剂上CO_2转化率高达23.1%,但产物主要是CH_4,此时CO_2在Co活性中心上直接发生甲烷化反应;碱金属助剂的引入显著抑制了CH_4的生成,提高了长链烃的选择性,但同时也降低了CO_2转化率,并且随着碱金属原子序数增大呈现先下降后上升的趋势,表明合适的碱性强度可以更好地改性催化剂性能.其中,Na助剂改性的CoCu/TiO_2催化剂的碱性最强,且H_2的脱附量降低幅度较小,因此,该催化剂具有最高的C_(5+)烃类收率,达到5.4%;同时CO_2转化率为18.4%,烃类产物中C_(5+)烃类选择性为42.1%.Na助剂改性的CoCu/TiO_2催化剂还展现了良好的催化稳定性,反应200 h后,CO_2转化率和C_(5+)选择性分别保持18%和40%.基于碱金属助剂对催化剂物化性质与反应性能的调变规律,可进一步指导CO_2加氢直接合成长链碳催化剂的设计与合成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号