首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arsenic trisulphide (As2S3) thin films have been deposited onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrates by electrodeposition technique using arsenic trioxide (As2O3) and sodium thiosulphate (Na2S2O3) as precursors and ethylene diamine tetracetic acid (EDTA) as a complexing agent. Double exposure holographic interferometry (DEHI) technique was used to determine the thickness and stress of As2S3 thin films. It was observed that the thickness of the thin film increases whereas film stress to the substrate decreases with an increase in the deposition time. X-ray diffraction and water contact angle measurements showed polycrystalline and hydrophilic surface respectively. The bandgap energy increases from 1.82 to 2.45 eV with decrease in the film thickness from 2.2148 to 0.9492 μm.  相似文献   

2.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.  相似文献   

3.
Nanocrystalline titanium dioxide (TiO2) thin films composed of densely packed nanometer-sized grains have been successfully deposited onto an indium-doped-tin oxide (ITO) substrate. Then cadmium sulphoselenide (CdSSe) thin film was deposited onto pre-deposited TiO2 to form a TiO2/CdSSe film, at low temperature using a simple and inexpensive chemical method. The X-ray diffraction, selected area electron diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and water contact angle techniques were used for film characterization. Purely rutile phase of TiO2 with super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 30-40 (±2) nm was observed. The increase in optical absorption was observed after CdSSe film deposition. Nest like surface morphology of CdSSe on TiO2 surface results in air trapping in the crevices which prevents water from adhering to the film with increase in water contact angle. Photosensitization of TiO2 with CdSSe was confirmed with light illumination intensity of 80 mW/cm2.  相似文献   

4.
In this work, TiO2-SiO2-In2O3 composite thin films on glass substrates were prepared by the sol-gel dip coating process. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and X-ray photoelectron spectroscopy (XPS) were used to evaluate the structural and chemical properties of the films. UV-vis spectrophotometer was used to measure the transmittance spectra of thin films. The water contact angle (WCA) of thin films during UV/vis irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that fabrication of composite film has a significant effect on transmittance and superhydrophilicity of TiO2 films.  相似文献   

5.
Structural, optical and electrical properties of CuIn5S8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn5S8 thin films were carried out at substrate temperatures in the temperature range 100-300 °C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 °C and amorphous for the substrate temperatures below 200 °C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 105 cm−1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 250° C.  相似文献   

6.
采用脉冲激光沉积(PLD)技术,利用LSCO/CeO2/YSZ多异质缓冲层,在Si(100)基 片上成功地制备了c轴一致取向的Bi3.15Nd0.85Ti3O12(BNT)铁电薄膜.利用X射线衍射(XRD)和扫描电镜(SEM)分析测定了薄膜的相结构 、取向和形貌特征,考察了沉积温度和氧分压对BNT薄膜微结构、取向和形貌的影响,确定 了BNT薄膜的最佳沉积条件.对在优化的条件下制备得到的BNT薄膜的C-V曲线测试得到了典型 的蝴蝶形曲线,表明该薄膜具有较好的电极化反转存储特性.最后讨论了BNT薄膜铁电性能与 薄膜取向的相关性. 关键词: 3.15Nd0.85Ti3O12')" href="#">Bi3.15Nd0.85Ti3O12 铁电薄 膜 多层异质结 脉冲激光沉积  相似文献   

7.
Mn3O4 thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), field emission scanning electron microscopy (FESEM), wettability test and optical absorption studies. The XRD pattern showed that the Mn3O4 films exhibit tetragonal hausmannite structure. Formation of manganese oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.30 eV. Mn3O4 film surface showed hydrophilic nature with water contact angle of 55°. The supercapacitive properties of Mn3O4 thin film investigated in 1 M Na2SO4 electrolyte showed maximum supercapacitance of 314 F g−1 at scan rate 5 mV s−1.  相似文献   

8.
A low-temperature chemical bath deposition (CBD) technique has been used for the preparation of Mn3O4 thin films onto glass substrates. The kinetic behavior and the formation mechanism of the solid thin films from the aqueous solution have been investigated. Structure (X-ray diffraction and Raman), morphological (atom force microscope), and optical (UV-vis-NIR) characterizations of the deposited films are presented. The results indicated that the deposited Mn3O4 thin films of smooth surface with nanosized grains were well crystalline and the optical bandgap of the film was estimated to be 2.54 eV.  相似文献   

9.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film.  相似文献   

10.
王少伟  陆卫  王弘  王栋  王民  沈学础 《物理学报》2001,50(12):2461-2465
采用化学溶液分解法(CSD)在Si衬底上制备了Bi2Ti2O7薄膜.X射线双晶衍射和原子力显微镜检测表明,所制备的薄膜主要为Bi2Ti2O7相的多晶材料.同时还研究了AuBi2Ti2O7/n-Si(100)结构的电容电压(C-V)特性,结果表明,在Bi2Ti2O关键词: C-V特性 2Ti2O7薄膜')" href="#">Bi2Ti2O7薄膜 电荷迁移  相似文献   

11.
LaF3 thin films were prepared by electron beam evaporation with different temperatures and deposition rates. Microstructure properties including crystalline structure and surface roughness were investigated by X-ray diffraction (XRD) and optical profilograph. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical composition of the films. Optical properties (transmittance and refractive index) and laser induce damage threshold (LIDT) at 355 nm of the films were also characterized. The effects of deposition rate and substrate temperature on microstructure, optical properties and LIDT of LaF3 thin films were discussed, respectively.  相似文献   

12.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

13.
Bismuth sulfide (Bi2S3) films were chemically deposited by a novel deposition system in which ammonium citrate was used as the chelating reagent. Two sulfur source thioacetamide (TA) and sodium thiosulfate (Na2S2O3) were used to prepare Bi2S3 films. Both the as-prepared films have amorphous structure. However, annealing can improve the crystallization of the films. The composition of the films prepared by TA and Na2S2O3 are all deviate from the stoichiometric ratio of Bi2S3. The Bi2S3 films are all homogeneous and well adhered to the substrate. The optical properties of the Bi2S3 films are studied. The electrical resistivity of the as-prepared films are all around 7 × 103 Ω cm in dark, which decreases to around 1 × 10Ω cm under 100 mW/cm2 tungsten-halogen illumination. After the annealing, the dark resistivity of the Bi2S3 film prepared by TA decreases by four magnitudes. In contrast, the dark resistivity of the Bi2S3 film prepared by Na2S2O3 only decreases slightly.  相似文献   

14.
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co20v thin films prepared by pulsed laser deposition on LaA1Oa (001). Both the electric resistivity p and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m. cm and 202 V/K at 980 K, resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples. A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature. The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application has high temperature thin film thermoelectric devices,  相似文献   

15.
VO2 thin films are grown on glass substrates by pulsed laser deposition using vanadium metal as a target. In this study, a ZnO thin film was used as a buffer layer for the growth of VO2 thin films on glass substrates. X-ray diffraction studies showed that the VO2 thin film had b-axis preferential orientation on a c-axis oriented ZnO buffer layer. The thickness of the ZnO buffer layer and the oxygen pressure during VO2 deposition were optimized to grow highly b-axis oriented VO2 thin films. The metal-insulator transition properties of the VO2 film samples were investigated in terms of infrared reflectance and electrical resistance with varying temperatures.  相似文献   

16.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

17.
N-type Bi2Te2.7Se0.3 thermoelectric thin films with thickness 800 nm have been deposited on glass substrates by flash evaporation method at 473 K. Annealing effects on the thermoelectric properties of Bi2Te2.7Se0.3 thin films were examined in the temperature range 373-573 K. The structures, morphology and chemical composition of the thin films were characterized by X-ray diffraction, field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Thermoelectric properties of the thin films have been evaluated by measurements of the electrical resistivity and Seebeck coefficient at 300 K. The Hall coefficients were measured at room temperature by the Van der Pauw method. The carrier concentration and mobility were calculated from the Hall coefficient. The films thickness of the annealed samples was measured by ellipsometer. When annealed at 473 K, the electrical resistivity and Seebeck coefficient are 2.7 mΩ cm and −180 μV/K, respectively. The maximum of thermoelectric power factor is enhanced to 12 μW/cm K2.  相似文献   

18.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

19.
High-k polycrystalline Pr2O3 and amorphous LaAlO3 oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr2O3 films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO3 films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.  相似文献   

20.
Silver antimony selenide (AgSbSe2) thin films were prepared by heating sequentially deposited multilayers of antimony sulphide (Sb2S3), silver selenide (Ag2Se), selenium (Se) and silver (Ag). Sb2S3 thin film was prepared from a chemical bath containing SbCl3 and Na2S2O3, Ag2Se from a solution containing AgNO3 and Na2SeSO3 and Se thin films from an acidified solution of Na2SeSO3, at room temperature on glass substrates. Ag thin film was deposited by thermal evaporation. The annealing temperature was 350 °C in vacuum (10−3 Torr) for 1 h. X-ray diffraction analysis showed that the thin films formed were polycrystalline AgSbSe2 or AgSb(S,Se)2 depending on selenium content in the precursor films. Morphology and elemental analysis of these films were done using scanning electron microscopy and energy dispersive X-ray spectroscopy. Optical band gap was evaluated from the UV-visible absorption spectra of these films. Electrical characterizations were done using Hall effect and photocurrent measurements. A photovoltaic structure: glass/ITO/CdS/AgSbSe2/Al was formed, in which CdS was deposited by chemical bath deposition. J-V characteristics of this structure showed Voc = 435 mV and Jsc = 0.08 mA/cm2 under illumination using a tungsten halogen lamp. Preparation of a photovoltaic structure using AgSbSe2 as an absorber material by a non-toxic selenization process is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号