首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple mode-locked erbium-doped fiber laser (EDFL) with three switchable operation states is proposed and demonstrated based on nonlinear polarization rotation. The EDFL generates a stable square pulse at a third harmonic pulse repetition rate of 87kHz as the 1480 nm pump power increases from the threshold of 17.5 m W to 34.3mW. The square pulse duration increases from 105 ns to 245ns as the pump power increases within this region. The pulse operation switches to the second operation state as the pump power is varied from 48.2mW to l16.Tm W. The laser operates at a fundamental repetition rate of 29 kHz with a fixed pulse width of 8.5 μs within the pump power region. At a pump power of ll6.TmW, the average output power is 3.84mW, which corresponds to the pulse energy of 131.5 ng. When the pump power continues to increase, the pulse train experiences unstable oscillation before it reaches the third stable operation state within a pump power region of 138.9 m W to 145.0 m W. Within this region, the EDFL produces a fixed pulse width of 2.8 μs and a harmonic pulse repetition rate of 58 kHz.  相似文献   

2.
By using a semiconductor saturable-absorber output coupler as a mode-locking device, we experimentally realized the operation of a diode-pumped passively mode-locked Nd:YVO4 laser. Stable laser pulses with duration of 2.3ps were generated at the output power of about 1W. With increasing the pump power to 9 W, the maximum mode-locked power of 1.7 W was obtained, which corresponds to a slope conversion efficiency of 44 % and opticalto-optical conversion efficiency of 19%.  相似文献   

3.
A high power continuous-wave (CW) diode-pumped Nd:YAG laser operated in heat capacity mode is demonstrated by use of two identical highly efficient diode-pumped laser heads placed in a plane-plane resonator.The laser heads are uniformly pumped with a five-fold symmetrical side-pumping configuration, and each head is able to output maximum output power of 2200 W at 808 nm.Under a total pump power of 4290 W,the output power of the laser at 1064 nm is up to 2277 W,corresponding to an optical-to-optical efficiency of 53.1%.  相似文献   

4.
We demonstrate the continuous wave p-polarized single longitudinal mode (SLM) operation of an Er:YAG laser at 1617.6nm pumped by a diode-laser with three inserted Fabry-Perot (FP) etalons at room temperature. The Brewster angle inserted FP is applied to obtain the p-polarized laser. For free running, the maximum output power is 570 m W with a pump power of 12.5 W. An incident pump power of 12.5 W is used to generate the maximum p-polarized single longitudinal mode output power of 78.5 m W, corresponding to a slope efficiency of 1.6% and an optical-to-optical efficiency of 0.61%. The beam quality M2 is measured to be 1.15 at the highest SLM output power. This stable polarized SLM oscillation is encouraging due to its application for an injection-locked system used as a master laser.  相似文献   

5.
Efficient, high-power, and widely tunable Tm-doped fiber lasers cladding-pumped by diode lasers at 791 nm are demonstrated by use of an external cavity containing a diffraction grating. A maximum output power of 62 W is obtained at 2 004 nm for 140 W of launched pump power, corresponding to a slope efficiency of 48% with respect to launched pump power. The operating wavelength is tunable over 200 nm (1 895 to 2 109 nm), with >52 W of output power over a tuning range of 140 nm (1 926 to 2 070 nm). Prospects for further improvement in output power, lasing efficiency, and tuning range are considered.  相似文献   

6.
A high power diode-pumped diffusion-bonded Tm:YLF laser operating at 1889.5nm with a FWHM linewidth of less than 0.1 nm is reported. A Brewster plate and two Fabry-Perot etalons are inserted in the laser cavity for spectral narrowing and stabilization. Under an incident pump power of 136.8 W, 46.1 W of output power is achieved, corresponding to an optical-to-optical conversion efficiency of 33.7% and a slope efficiency of 42.8%. The laser wavelength shift of only 0.07nm with the incident pump power from 20.1 W to 136.8W is observed. The M2 factor at maximum output power is calculated to be 2.3 in the x-axis and 2.0 in the y-axis, respectively.  相似文献   

7.
In this work, we investigate suppressing mode instability in detail by varying the seed power in a large mode area all-fiber amplifier with a fiber core diameter of 25 μm. The transverse mode instability(TMI) thresholds are systematically measured for different seed power. Our experimental results reveal that increasing the seed power has a positive influence on enhancing the output power before the TMI effect appears, and finally the TMI threshold is approximately doubled from1030 W to 2280 W when the seed power is increased from 27 W to 875 W. Almost 84.7% slope efficiency is reached with different seed power before the TMI threshold power. During our operation, we also find that in this type of LMA fiber the beam quality of the amplifier is degraded gradually instead of a sudden change as the pump power increases.  相似文献   

8.
We report a diode-pumped self-Q-switched 1064-nm Cr,Nd:YAG of 16-18 ns. The maximum average output power up to 7 W, 3370, is obtained in a simple and compact linear cavity by using transmittance of 1570. The laser operates at TEM00 mode with a laser with pulse duration in the range corresponding to a slope efficiency of a plane-concave output coupler with a pump power of 14.2 W.  相似文献   

9.
We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO_4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.  相似文献   

10.
A high repetition rate, picosecond terahertz(THz) parametric amplifier with a LiNbO_3(LN) crystal has been demonstrated in this work. At a 10 k Hz repetition rate, a peak power of 200 W and an average power of 12 μW have been obtained over a wide range of around 2 THz; at a 100 k Hz repetition rate, a maximum peak power of 18 W and an average power of 10.8 μW have been obtained. The parametric gain of the LN crystal was also investigated, and a modified Schwarz–Maier model was introduced to interpret the experimental results.  相似文献   

11.
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.  相似文献   

12.
We demonstrate a wildly tunable, high-eFficiency mid-infrared (mid-IR) output-coupled single resonant optical parametric oscillator (OC-SRO) pumped by a Yb-fiber laser. The compact mid-infrared source employs a 50- mm-long, multi-grating MgO-doped periodically poled lithium niobate (MgO-PPLN) crystal, providing as much as 1.73 W idler power at 3.012#m, and 1.27W signal power at 1645nm, corresponding to an overall conversion efficiency of 41.7% and a slope efficiency of 77.9%. In particular, the mid-infrared output power of 1.03 W and 0.67W are obtained at 3.7μm and 3.9μm, respectively, with an optical-to-optical conversion efficiency of 14.3% and 9.3%. Furthermore, the idler light is tunable from 3 μm to 3.9 μm by changing the periods from 31 to 28.5μm, with the output power 〉1 W over 78% of the tuning range. Our experimental results are pump power limited and further mid-IR power and conversion efficiency could be obtained with a suitable high-power pump source. The total OC-SRO output power rms at 2.6 W is about 0.6% during 2 h measurement.  相似文献   

13.
A high power cw all-solid-state 1.34-μm Nd:GdVO4 laser is experimentally demonstrated. With a diode-double-end-pumped configuration and a simple plane-parallel cavity, a maximum output power of 27.9 W is obtained at incident pump power of 96 W, introducing a slope efficiency of 35.4%. To the best of our knowledge, this is the highest output power of diode-end-pumped 1.3-μm laser. With the experimental data, the thermal-stress- resistance figure of merit of Nd:GdVO4 crystal with 0.3 at% Nd^3+ doped level is calculated to be larger than 9.94 W/cm.  相似文献   

14.
We report a compact high power Tm,Ho:YAG laser nearly at room temperature. The laser-diode side-pumped Tm:YAG and Tm,Ho:YAG laser modules are operated in the same cavity. The laser yields 37.34 W of continuous wave output power under the temperature of 6℃, corresponding to a maximum slope efficiency of 16.7% when the output power lies from 5.1 W to 27.0 W. This is the first report on the combined Tm:YAG and Tm,Ho:YAG lasers for obtaining high power 2.1 μm laser.  相似文献   

15.
A laser diode-pumped high-efficiency widely tunable Tm:YAP laser with excellent comprehensive properties is reported.The output power is stable at a given pump power.Under the absorbed pump power of 12.95 W,the maximum output power at 2,010 nm is 5.16 W,corresponding to a slope efficiency of 45.5%.The generated beam profile is close to the Gaussian TEM00 near the maximum pump power.Furthermore,the laser working wavelength can be continuously tuned through optimization from 1,894 to 2,066 nm,which is the widest tunable range for Tm:YAP lasers to date.  相似文献   

16.
We demonstrate a high-efficiency continuous-wave Tm: YAG ceramic laser pumped with a Ti:sapphire laser. An output power up to 860mW is obtained under an absorbed pump power of 2.21 W at 785nm, corresponding to a slope efficiency of 42.1% and optical to optical efficiency of 22%. The measured central wavelength is 2012nm.  相似文献   

17.
A depolarization phenomenon in an electro-optical crystal in a quasi-three-level 946 nm Nd:YAG laser is observed. A compensation of the thermal effects in electro-optical crystals is achieved by employing a quarter-wave plate, with one optical axis parallel to the laser polarization. This technique allows for the production of an electro-optically Q-switched 946 nm Nd:YAG laser at 1 k Hz. A maximum output power of 350 m W at 1 k Hz repetition frequency and 11 ns pulse duration are achieved with an output coupler of 10% transmission under the incident pump power of 11.1 W, corresponding to a peak power of ~32 k W.  相似文献   

18.
An efficient acousto-optically Q-switched extracavity frequency-doubled 532nm laser based on a diode-end-pumped master oscillator power amplifier (MOPA) is demonstrated. With a type I non-critically phase-matched LBO, 26W of average power at 532nm in a near diffraction limited mode at a repetition rate of 30kHz was generated under 43W pump power of 1064nm Nd:YVO_{4} laser, which correspond to a frequency-doubling conversion efficiency of 60%.  相似文献   

19.
A high power dual-wavelength Ti:sapphire laser system with wide turning range and high efficiency is described, which consists of two prism-dispersed resonators pumped by an a11-solid-state frequency-doubled Nd:YAG laser. Tunable dual-wavelength outputs, with one wavelength range from 750nm to 795nm and the other from 80Ohm to 850nm, have been demonstrated. With a pump power of 23 W at 532nm, a repetition rate of 6.5kHz and a pulse width of 67.6ns, the maximum dual-wavelength output power of 5.6 W at 785.3nm and 812.1 run, with a pulse width of 17.2ns and a line width of 2nm, has been achieved, leading to an optical-to-optical conversion efficiency of 24.4%.  相似文献   

20.
A wavelength-tunable,efficient,and high-average power single diode-pumped continuons wave(CW) Yb:SSO laser is reported.A maximum output power of 8.8 W at 1 062.6 nm is obtained using the absorbed pump power of 11.7 W,which corresponds to a slope efficiency of 85.5% and an optical-to-optical conversion efficiency of 48.9%.The wavelength tuning of the Yb:SSO laser pumped by the 976-nm LD is also investigated.The results show the tuning range from 1 002.30 to 1 068.47 nm,which corresponds to a tunability range of 66.17 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号