首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
过渡金属硫族化合物由于其具有独特的结构和性质,在光电子学、纳米电子学、储能器件、电催化等领域具有广泛的应用前景,是一类被持续关注的代表性二维层状材料.在材料应用过程中,对材料掺杂特性的调控会极大地改变器件的响应性能.因而,对利用掺杂手段调控过渡金属硫族化合物器件响应性能的研究具有重要的意义.电化学离子插层方法的发展为二维材料的掺杂调控提供了新的手段.本文以WS2为例,采用电化学离子插层方法对厚层WS2的掺杂特性进行优化,观察到离子插入后器件电导率的显著增强(约200倍),以及栅压对器件光电响应性能的有效且可逆的调控.本文通过栅压控制离子插层的方法实现对WS2器件光电响应的可逆可循环调节,为利用离子插层方法调控二维材料光电器件响应性能研究提供了实验基础.  相似文献   

2.
高压技术是一种高效、连续、可逆的调控材料结构、电学、光学等物理特性的手段,因此利用压强工程在材料中实现超导态、制备超硬材料等成为高压领域的研究热点。不同于传统的三维体相材料,二维材料及其异质结中独特的层间耦合作用使其具有许多不同于传统材料的物理特性,且这些物理特性极易受到外场影响和调控,使得高压物理成功地拓展到低维材料领域。本文以石墨烯、黑磷、六方氮化硼和过渡金属二硫族化合物等几种典型的二维材料及其异质结为例,概述了二维材料及异质结在高压调控下的结构、电学、声子动力学、光学等方面的响应,并简要讨论这些高压调控下的二维材料在未来电子、光电器件等领域应用的潜力。  相似文献   

3.
胡倩颖  许杨 《物理学报》2022,(12):124-138
二维过渡金属硫族化合物作为二维半导体材料领域研究的重要分支,凭借较强的光-物质相互作用和独特的自旋-谷锁定等特性,吸引了广泛而持久的关注.单层的二维过渡金属硫族化合物半导体具有直接带隙,在二维的极限下,由于介电屏蔽效应的减弱,电荷间的库仑相互作用得到了显著的增强,其光学性质主要由紧密束缚的电子-空穴对—激子主导.本文简单回顾了近年来二维过渡金属硫族化合物光谱学的研究历程,阐述了栅压和介电环境对激子的调制作用,之后重点介绍了一种新颖的激子探测方法.由于激发态激子(里德伯态)的玻尔半径远大于单原子层本身的厚度,电子-空穴对之间的电场线得以延伸到自身之外的其他材料中.这使得二维半导体材料的激子可以作为一种高效的量子探测器,感知周围材料中与介电函数相关的物理性质的变化.本文列举了单层WSe2激子在探测石墨烯-氮化硼莫尔(moiré)超晶格势场引发的石墨烯二阶狄拉克点,以及WS2/WSe2莫尔超晶格中分数填充的关联绝缘态中的应用.最后,本文展望了这种无损便捷、高空间分辨率、宽适用范围的激子探测方法在其他领域的潜在应用场景.  相似文献   

4.
在光电子学应用中,器件性能主要取决于半导体纳米材料中的光生载流子动力学过程. 但是,受反应速率、材料表面积、材料组成等多种因素影响,描述其中的动力学过程非常具有挑战性. 模拟光生载流子动力学过程可以通过绝热分子动力学方法实现,即求解包含非绝热耦合项的含时薛定谔方程. 在众多绝热分子动力学方法中,面跳跃方法出色地平衡了计算精度和计算成本,因而成为描述半导体纳米材料中不同非绝热过程间竞争的有力工具,已被用来模拟材料中的超快动力学过程和其他复杂效应,如Janus过渡金属二硫族化合物范德华异质结中的电荷分离. 本综述通过介绍该领域代表性的理论及实验工作,阐述了光生载流子对半导体纳米材料性能的重要影响,以及面跳跃方法在描述其动力学行为中的重要作用. 由于日趋复杂的材料体系对理论工作提出了巨大的挑战,本综述重点介绍了最近用于模拟这些复杂材料的一些开创性的新方法,包括高精度的电子结构方法和与之相结合的绝热分子动力学方法.  相似文献   

5.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   

6.
近年来,二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)由于其出色的电学和光学特性在光电探测领域被广泛研究.相比于报道较多的场效应晶体管型以及异质结型器件,同质结器件在光电探测方面具有独特优势.本文将聚焦基于TMDCs同质结的光电探测器的研究,首先介绍同质结光电器件的主要工作原理,然后以载流子调控方式为分类依据总结TMDCs同质结的几种制备方法及其获得的电学和光电性能.此外,本文还对同质结器件中光生载流子的输运过程进行具体分析,阐述横向p-i-n结构具有超快光电响应速度的原因.最后对基于TMDCs同质结的光电探测器的研究进行总结与前景展望.  相似文献   

7.
孔宇晗  王蓉  徐明生 《物理学报》2022,(12):481-486
在众多二维材料中,过渡金属硫族化合物由于其具有独特的光电特性深受广大研究者喜爱.近年来,由二维过渡金属硫族化合物材料与有机半导体结合构建的范德瓦耳斯异质结受到极大的关注.这种异质结可以利用两者的优势对光电特性等性能进行调控,为许多基础物理和功能器件的构建提供了研究思路.本文构建了酞菁铜/二硫化钼(CuPc/MoS2)范德瓦耳斯异质结,并对其荧光特性进行了表征和分析.与单层MoS2相比较发现,引入有机半导体CuPc后,异质结当中发生了明显的荧光淬灭现象.通过荧光分析,该现象可以用引入CuPc后异质结中负三激子与中性激子之比增加来解释.此外,通过第一性原理计算分析发现,引入CuPc会在MoS2的禁带中引入中间带隙态,使得CuPc与MoS2之间产生非辐射复合,这同样会导致荧光淬灭的发生.CuPc/MoS2异质结的荧光淬灭现象可以为同类型范德瓦耳斯异质结的光电特性调控研究提供参考和思路.  相似文献   

8.
黑磷是继石墨烯、过渡金属硫族化合物(TMDCs)之后又一个备受关注的二维材料.黑磷从单层到块材都是直接带隙半导体,且带隙从单层的1.7 eV一直随着层数的增加而减小,到块材则变为0.3 eV,涵盖了可见光到中红外波段,恰好填补了石墨烯和过渡金属硫族化合物的带隙在该波段的空白.同时,黑磷还具有很高的载流子迁移率、良好的调控性、面内各向异性等优异特性,很快便引起了人们广泛的研究兴趣.本论文主要介绍了当前有关二维黑磷光学性质方面的研究进展,包括黑磷的本征光学性质,如带间跃迁吸收、激子、光致发光、光学性质的稳定性;外界微扰,如应变、电场等对黑磷光学性质的影响;最后做了总结与展望.希望本文对黑磷光学性质研究的综述,能够引起对黑磷研究的更广泛兴趣.  相似文献   

9.
人为操控电子的内禀自由度是现代电子器件的核心和关键.如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储.以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质,成为了新型谷电子学器件研究的优选材料体系.本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件的研究进展,并对谷电子学材料和器件的研究进行了总结与展望.  相似文献   

10.
二维磁性材料的自发磁化可以维持到单层极限下,为在二维尺度理解和调控磁相关性质提供了一个理想的平台,也使其在光电子学和自旋电子学等领域具有重要的应用前景.晶体结构为层状堆叠的过渡金属卤化物具有部分填充的d轨道和较弱的范德瓦耳斯层间相互作用等特性,是合适的二维磁性候选材料.结合分子束外延(MBE)技术,不仅可以精准调控二维磁性材料生长达到单层极限,而且可以结合扫描隧道显微术等先进实验技术开展原子尺度上的物性表征和调控.本文详细介绍了多种二维磁性过渡金属卤化物的晶体结构和磁结构,并展示了近几年来通过MBE技术生长的二维磁性过渡金属卤化物以及相应的电学和磁学性质.随后,讨论了基于MBE方法对二维磁性过渡金属卤化物的物性进行调控的方法,包括调控层间堆垛、缺陷工程以及构筑异质结.最后,总结并展望了二维磁性过渡金属卤化物研究领域在未来的发展机会与挑战.  相似文献   

11.
近年来,二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注.特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质,使其在下一代光电子器件领域具有广阔的应用前景.本文将主要介绍二维材料在光电探测领域上的应用优势,概述光电探测器的基本原理和参数指标,重点探讨光栅效应与传统光电导效应的区别,以及提高光增益和光响应度的原因和特性,进而回顾光栅局域调控在光电探测器中的最新进展及应用,最后总结该类光电探测器面临的问题及对未来方向的展望.  相似文献   

12.
Two-dimensional(2D) materials have been a very important field in condensed matter physics, materials science, chemistry, and electronics. In a variety of 2D materials, transition metal chalcogenides are of particular interest due to their unique structures and rich properties. In this review, we introduce a series of 2D transition metal chalcogenides prepared by epitaxial growth. We show that not only 2D transition metal dichalcogenides can be grown, but also the transition metal chalcogenides that do not have bulk counterparts, and even patterned transition metal chalcogenides can be fabricated. We discuss the formation mechanisms of the novel structures, their interesting properties, and potential applications of these 2D transition metal chalcogenides. Finally, we give a summary and some perspectives on future studies.  相似文献   

13.
王新强  黎大兵  刘斌  孙钱  张进成 《发光学报》2016,(11):1305-1309
高质量氮化镓(Ga N)材料是发展第三代半导体光电子与微电子器件的根基。大失配、强极化和非平衡态生长是Ga N基材料及其量子结构的固有特点,对其生长动力学和载流子调控规律的研究具有重要的科学意义与实用价值,受到各国科学界与产业界广泛高度重视。本文对大失配、强极化氮化物半导体材料体系外延生长动力学和载流子调控规律进行了研究,旨在攻克蓝光发光效率限制瓶颈,突破高Al和高In氮化物材料制备难题,实现高发光效率量子阱和高迁移率异质结构,制备多波段、高效率发光器件和高频率、高耐压电子器件,实现颠覆性的技术创新和应用,带动电子材料产业转型升级。  相似文献   

14.
自石墨烯被发现以来,二维材料因其优异的特性获得了持续且深入的探索与发展,以石墨烯、六方氮化硼、过渡金属硫化物、黑磷等为代表的二维材料相关研究层出不穷.随着二维新材料制备与应用探索的不断发展,单一材料性能的不足逐渐凸显,研究者们开始考虑采用平面拼接和层间堆垛所产生的协同效应来弥补单一材料的不足,甚至获得一些新的性能.利用二维材料晶格结构的匹配构建异质结,实现特定的功能化,或利用范德瓦耳斯力进行堆垛,将不同二维材料排列组合,从而在体系里引入新的自由度,为二维材料的性质研究和实际应用打开了新的窗口.本文从原子制造角度,介绍了二维平面和范德瓦耳斯异质结材料的可控制备和光电应用.首先简要介绍了应用于异质结制备的常见二维材料的分类及异质结的相关概念,然后从原理上分类列举了常用的表征方法,随后介绍了平面和垂直异质结的制备方法,并对其光电性质及器件应用做了简要介绍.最后,对领域内存在的问题进行了讨论,对未来发展方向做出了展望.  相似文献   

15.
二维半导体材料为纳米尺度的光学性质研究提供了良好的支持. 当将其构筑成异质结时, 界面间的相互作用可以改变原光电性质或产生新的性质, 是二维材料光电子器件功能控制的重要手段. 利用机械剥离法制备WSe2/GeS 异质结, 通过发光光谱研究异质结层间激子的光学性质. 结果表明:p 型 GeS 与弱 n 型 WSe2 构筑成异质结时会产生新的层间激子. 与 GeS 和 WSe2 的荧光发射强度相比, 异质结的层间激子发光强度显著增加. 此研究为设计具有先进光电性能的二维半导体器件提供了思路.  相似文献   

16.
2D layered materials and heterojunctions with excellent ductility and controllable atomic‐layer thicknesses have shown promise for use in advanced electronics and optical functional devices. Tailoring of nanoscale configurations and physical properties is essential and required for bespoke fabrication of advanced devices based on 2D materials. Due to the high strain tolerance of 2D layered materials, strain engineering is an effective method to tune their behaviors of electrons and phonons. A wide variety of 2D materials are available with tunable bandgaps from interface coupling effects, making 2D layered heterojunctions a versatile platform for understanding fundamental physical issues. Most physical properties and functional applications can be tailored by applying strain to 2D layered materials and heterostructures to realize a scheduled target in carrier concentration, mobility, and barrier height. Herein, the latest research on the roles of strain in modulating the physical properties of 2D layered materials and heterojunctions is introduced, focusing on the physical properties behind strain modulation in 2D materials. Understanding and manipulating strain in 2D layered materials and heterojunctions is important and beneficial for creating tunable electronic and optoelectronic constructions with advanced components, including functional flexible and wearable devices.  相似文献   

17.
The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.  相似文献   

18.
Haiting Yao 《中国物理 B》2022,31(3):38501-038501
Graphene has high light transmittance of 97.7% and ultrafast carrier mobility, which means it has attracted widespread attention in two-dimensional materials. However, the optical absorptivity of single-layer graphene is only 2.3%, and the corresponding photoresponsivity is difficult to produce at normal light irradiation. And the low on—off ratio resulting from the zero bandgap makes it unsuitable for many electronic devices, hindering potential development. The graphene-based heterojunction composed of graphene and other materials has outstanding optical and electrical properties, which can mutually modify the defects of both the graphene and material making it then suitable for optoelectronic devices. In this review, the advantages of graphene-based heterojunctions in the enhancement of the performance of photodetectors are reviewed. Firstly, we focus on the photocurrent generation mechanism of a graphene-based heterojunction photodetector, especially photovoltaic, photoconduction and photogating effects. Secondly, the classification of graphene-based heterojunctions in different directions is summarized. Meanwhile, the latest research progress of graphene-transition metal dichalcogenide (TMD) heterojunction photodetectors with excellent performance in graphene-based heterostructures is introduced. Finally, the difficulties faced by the existing technologies of graphene-based photodetectors are discussed, and further prospects are proposed.  相似文献   

19.
Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.  相似文献   

20.
葛翠环  李洪来  朱小莉  潘安练 《中国物理 B》2017,26(3):34208-034208
Atomically thin two-dimensional(2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes(LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号