首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Nuclear clustering based on α particles and strongly bound substructures with N=Z has been studied for many decades. Of particular interest are excited states close to the decay thresholds into substructures, as described by the Ikeda diagram. This diagram can be extended to neutron-rich nuclei; in these cases strongly deformed isomeric states consisting of clusters and loosely bound neutrons will appear. A possible approach to describe these states is to use explicitly molecular concepts, with neutrons in covalent binding orbits. Examples for molecular structure in beryllium isotopes and in other neutron-rich light nuclei (carbon and neon) are discussed.  相似文献   

2.
Clustering has long been known to be influential in the structure of ground and excited states of N=ZN=Z nuclei. States close to the decay thresholds are of particular interest, as clustering becomes dominant. Recent studies of loosely bound light neutron-rich nuclei have focused attention on structures based on clusters and additional valence neutrons, which give rise to covalent molecular binding effects. These nuclear molecules appear only at the extremes of deformation, in the deformed shell model they are referred to as super- and hyper-deformed. The beryllium isotopes provide the first examples of such states in nuclear physics. Further nuclear molecules consisting of unequal cores and also with three centres can be considered. These arise in the isotopes of neon and carbon, respectively. Molecular states in intrinsically asymmetric configurations give rise to parity (inversion) doublets. Examples of recent experiments demonstrating the molecular structure of the rotational bands in beryllium isotopes are presented. Further experimental evidence for bands as parity doublets in nuclei with valence neutrons in molecular orbits is also analysed. Work on chain states (nuclear polymers) in the carbon isotopes is discussed. These are the first examples of hyper-deformed structures in nuclei with an axis ratio of 3:1. Future perspectives are outlined based on a threshold diagram for covalent nuclear molecules with clusters bound via neutrons in covalent molecular configurations.  相似文献   

3.
Using the concept of covalent molecular orbitals for neutrons and the known properties of the local α + 16O potential the formation of asymmetric molecular structures in neon isotopes is discussed. Experimental evidence for parity doublets in 21Ne is reviewed and a corresponding band structure for the states in 21Ne at moderate excitation energy of E x = 0-8 MeV is proposed. The structure of some bands can be interpreted as consisting of an instrinsic asymmetric ( 4He + 16O) structure bound by a covalent neutron in σ and π orbitals. An extension of the observed structures to symmetric molecular structures in isotopes of Mg and heavier nuclei is suggested. In particular shape isomers in isotopes of magnesium, namely (He)2O molecules, can be predicted and an extended Ikeda diagram is proposed. Received: 11 July 2001 / Accepted: 22 August 2001  相似文献   

4.
The molecular states in the mass 9 and 10 nuclei, which consist of two α-particles plus one or two valence nucleons (protons or neutrons) are discussed. Arguments for the existence of two-center dimers as excited states in10Be and corresponding resonances (p+9Be) in10B are given. The latter states are observed as anomalous (non statistical) population in the final state interactions in thep+9Be channel in various heavy ion collisions. With the establishment of two-center states (dimers) based on the αα-potential and a localized binding via two nucleons in10Be, the existence of more extended structures (multimers) by adding (α2n) structures to10Be* is postulated. Generally clustering intoα-particles and nucleons in terms of molecular states is expected to occur at excitation energies close to the threshold for these substructures in analogy to the clustering rules of Ikeda forα-particle nuclei. Consequences to clustering properties of neutron rich nuclei are discussed.  相似文献   

5.
The dependence of the properties of low-lying states of Mo isotopes on the mass number A = 83–117 is studied based on the collective and shell models of atomic nuclei. The variation of the nuclear shape with an increasing number of neutrons influences strongly the properties of excited states of Mo isotopes. Decay channels of isovector giant dipole resonance with emission of protons and neutrons are studied in the framework of the combined model. The basic mechanisms of the production of stable Mo isotopes in astrophysical nuclear reactions are described.  相似文献   

6.
We present Hartree-Fock-Bogoliubov (HFB) calculations of the ground states of even Mg isotopes. A Skyrme force is used in the mean-field channel and a density-dependent zero-range force in the pairing channel. Our study shows that the ground states of36,38,40Mg are strongly deformed with significantly different deformations for the neutrons and protons. Our study supports the disappearance of theN=28 shell gap in the Mg isotopes.  相似文献   

7.
王楠  孟杰  赵恩广 《理论物理通讯》2010,53(6):1145-1148
The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) model. The calculation results reproduce the binding energies and the quadrupole deformations well. The calculation results indicate these nuclei at ground states evolve from neaxly-spherical (N = 130) shape to quadrupole deformation shape with the increase of the neutron number. It is also found that among the Rn isotopes, only^222,224 Rn axe oetupole deformed and the octupole deformations for them are small. However, more nuclei (N ≌ 134 148) in Th and U isotopes are octupole deformed and the octupole deformations for some of them are significant (|β3|- 0.1 or even larger).  相似文献   

8.
《Nuclear Physics A》1997,621(3):706-718
We present Hartree-Fock-Bogoliubov (HFB) calculations of the ground states of even Mg isotopes. A Skyrme force is used in the mean-field channel and a density-dependent zero-range force in the pairing channel. 40Mg and 20Mg are predicted to be at the two-neutron and two-proton drip lines respectively. A detailed study of the quadrupole deformation properties of all the isotopes shows that the ground states of 36,38,40Mg are strongly deformed with significantly different deformations for the neutrons and protons. Our study supports the disappearance of the N = 28 shell gap in the Mg and Si isotopes.  相似文献   

9.
10.
基于Ru (Z = 44) 丰中子同位素中存在最大三轴形变的理论预言和实验证据,综述了近年来Rh (Z = 45),Pd (Z =46), Ag (Z =47), Cd (Z =48)(质子数Z 位于Ru,Z =44 之上)及Zr (Z =40), Nb (Z =41), Mo (Z =42),Tc (Z =43)(质子数Z 位于Ru,Z =44 之下) 的A~ (100~126) 丰中子同位素中关于三轴形变的形状变迁和形状共存系统性研究的重要进展。252Cf 自发裂变瞬发 射线-- 三重符合、特别是新建立的--- 四重符合数据的系统观测和研究,在Ru, Pd, Cd 和Nb 丰中子同位素中显著扩展或首次观测到了一系列能带,为这个核区原子核形状的研究提供了新的、重要的实验数据。联系此前报道的有关进展,使用PES, TRS, PSM, CCCSM 和SCTAC 理论模型计算拟合新的实验数据,在该核区沿同中素和同位素链,并随自旋和激发能变化各自由度,跟踪原子核形状渐进变化,获得了新的系统性研究成果,显著扩展和深化了人们对原子核形状变迁和形状共存的认知。对于Ru 及其上的Rh (Z = 45), Pd (Z = 46), Ag (Z = 47) 和Cd (Z = 48) 丰中子同位素的研究表明:Rh 丰中子核具有比最大值稍小的三轴形变,γ = 28°,并在103{106Rh 同位素链上鉴别出了手征对称破缺;在三轴形变核112Ru和114Pd(N = 68)中发现了三轴原子核的摆动运动,该摆动运动也可能在114Ru (N = 70)中存在;观察到了从具有最大三轴形变的110,112Ru 中手征破缺到稍小三轴形变的112,114,116Pd 中扰动的手征破缺的过渡;在较软的Ag 核中观察到了丰富的谱学结构,在104,105Ag 中鉴别出了可能的手征对称破缺,在较重的115,117Ag 中提出了趋于三轴形变的软度;具有小形变的Cd核的能级结构被解释为准粒子耦合、准转动和软三轴形变;最近的库伦激发的研究提供了Z = 50, N = 82满壳附近122,124,126Cd 核中出现核集体性的实验和理论证据;上述研究成果展现出从Ru中的最大三轴形变(γ=30°,三轴形变极小增益为0.67 MeV), 经具有大三轴形变的Rh核γ=28°),到Pd核中的稍小、但稳定于中等自旋到高自旋区的三轴形变(γ~41°,三轴形变极小增益为0.32 MeV),再经Ag核中的软度,最后到具有很小形变、但仍出现集体性质、包括软三轴形变的Cd核的过渡。对于Pd核转动带交叉系统性的研究揭示了其第一带交叉(νh11/2)2 中子转动顺排的上行驱动,和第二带交叉(πg9/2)2质子转动顺排的下行驱动效应,成功地解释了114Pd 中的三轴摆动运动,并给出了110-118Pd同位素链中理论早已预言、而比早期理论预言更为完整准确的形状渐进变迁和形状共存的图像。根据该核区的系统研究,发现最大三轴形变出现在112Ru,而在相邻的偶Z(Pd)同位素链,三轴形变极小的中心在114Pd, 两者均为N = 68。上述系统性研究沿相邻的Ru和Pd偶Z同位素链,在N =68同中素中鉴别出最大三轴形变,均比理论预言的108Ru 和110Pd 多4个中子。在Z值位于Ru (Z = 44) 之下的Zr (Z = 40), Nb (Z = 41), Mo (Z = 42) and Tc (Z = 43) 丰中子同位素中,Y和Zr核具有很强的轴对称四极形变,而在较重的Zr同位素中出现了自由度;较重的Nb核(A = 104~106) 基态具有中等程度的软三轴形变和强四极形变,随着自旋和激发能的增加,过渡到接近于轴对称的强四极形变;而较轻的Nb核(A≤103) 基态均接近轴对称形状;在Nb同位素链上基态由球形到强四极形变的形状突变发生在100Nb(N = 59),在100-106Nb同位素链中基态的软三轴形变随中子数增加而增加;在Nb核中还观察到关于软三轴形变的形状共存;Mo核具有大的三轴形变,观察到了振动和手征对称破缺;Tc核具有比最大值稍小的三轴形变,γ=26°,并观察到了手征对称破缺。质子数Z从41到48的A~(100~126)丰中子同位素,特别是Pd和Nb 同位素,呈现出关于三轴形变的过渡特征。This paper reviews the systematic investigations and understanding for the shape transitions and coexistence with regard to triaxial deformations in A s 100 to 126 neutron-rich Rh (Z = 45), Pd (Z = 46), Ag (Z = 47), Cd (Z = 48) and Zr (Z = 40), Nb (Z = 41), Mo (Z = 42), Tc (Z = 43) isotopes with Z beyond and below Ru (Z = 44), respectively, in Ru the maximal triaxial deformation having been predicted and deduced. The recent measurements and studies of prompt triple- and four-fold, γ-γ-γ and γ-γ-γ-γ, coincidence data from the spontaneous fission of 252Cf using Gammasphere have yielded considerable expansion and extension or first observation of the bands in Ru, Pd, Cd, and Nb isotopes,which provided important data for the studies of nuclear shapes in this region. Combined with previous investigations, recent systematic studies of the new data well reproduced by PES, TRS, PSM, CCCSM and SCTAC model calculations have traced shape changes along the isotonic and isotopic chains, respectively,and with changing excitations/spins as well, significantly expanding our knowledge of shape transitions/coexistence in nuclei.For the neutron-rich Ru and beyond, Rh, Pd, Ag and Cd isotopes, triaxial deformations γ= 28°,slightly smaller than the maximal value, were deduced in Rh (Z = 45) isotopes, with chiral symmetry breaking proposed in 103-106Rh; onset of wobbling motions were identified in 112Ru and 114Pd (N =68),and probably also in 114Ru (N =70); evolution from chiral symmetry breaking in 110,112Ru with maximal triaxial deformations to disturbed chirality in 112,114,116Pd with less pronounced triaxial deformations was proposed; rich nuclear structure was proposed in soft Ag isotopes with possible chiral doubling structure suggested in 104,105Ag, and softness towards triaxial deformation proposed in heavier 115,117Ag;quasi-particle couplings, quasi-rotations and soft triaxiality were suggested in Cd (Z =48) isotopes with small deformations; onset of collectivity was recently suggested in 122,124,126Cd in the vicinity of Z =50 and N = 82 closed shells by studies of Coulomb excitations; shape evolutions from maximal triaxial deformations in Ru (γ=30°, with triaxial minimum energy gain of 0.67 MeV), through Rh with large triaxial deformations ( γ=28°), to less pronounced triaxiality in Pd (with triaxial minimum energy gain of 0.32 MeV), then soft triaxiality in Ag, and finally to slightly deformed Cd isotopes but with emergence of collectivity and soft triaxiality were proposed. The systematic studies of the band crossings in Pd revealed up-rising drivings of the first band crossings caused by (νh11/2)2 and down-sloping drivings of the second band crossings by (πg9/2)2, explained the onset of wobbling motions in 114Pd,and showed a long-sought picture of shape evolution and coexistence in the Pd isotopic chain which is more complete but complex than earlier predictions. Based on the systematic studies in the mass region,maximal triaxial deformation is found to be reached in 112Ru and less-pronounced triaxiality centered at 114Pd, both for N =68, four neutrons more than predicted in earlier theoretical calculations.In the neutron-rich Zr (Z =40), Nb (Z =41), Mo (Z =42) and Tc (Z =43) isotopes with Z just below Ru, large quadrupole deformations of axially symmetric shapes were deduced in Y and Zr isotopes, with emergence of the degree of freedom having been suggested for heavier Zr isotopes; medium triaxial deformations were deduced for the ground states of heavier (A > 104) Nb isotopes, and, with increasing excitations and spins, evolution from medium triaxial deformations with strong quadrupole deformations at ground states to nearly axially-symmetric shapes were deduced; light Nb isotopes (A6103) have near axially-symmetric shapes with strong quadrupole deformations; combining with the identification of onset of strong quadrupole deformation at 100Nb in the Nb isotopic chain, an increase of soft triaxiality with increasing neutron number was proposed in 100-106Nb. Shape coexistence with regard to soft triaxiality is also proposed in Nb isotopes; large triaxial deformations, vibrations and chiral doublets were proposed in Mo isotopes; chiral doubling and large triaxial deformations (γ ~26°) slightly smaller than the maximal triaxiality were suggested in Tc isotopes.The neutron-rich nuclei with Z ranging from 41 through 48 and A ~100 to 126, especially the Pd and Nb isotopes are thus found to be transitional nuclei with regard to triaxiality.  相似文献   

11.
12.
The neutron-rich carbon isotopes 19,17C have been investigated via proton inelastic scattering on a liquid hydrogen target at 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to reconstruct the energy spectrum, in which fast neutrons and charged fragments were detected in coincidence using a neutron hodoscope and a dipole magnet system. A peak has been observed with an excitation energy of 1.46(10) MeV in 19C, while three peaks with energies of 2.20(3), 3.05(3), and 6.13(9) MeV have been observed in 17C. Deduced cross sections are compared with microscopic DWBA calculations based on p-sd   shell model wave functions and modern nucleon–nucleus optical potentials. JπJπ assignments are made for the four observed states as well as the ground states of both nuclei.  相似文献   

13.
Total Routhian Surface(TRS) calculations have been performed to investigate shape coexistence and evolution in neutron-deficient krypton isotopes72,74,76 Kr. The ground-state shape is found to change from oblate in72 Kr to prolate in74,76 Kr, in agreement with experimental data. Quadrupole deformations of the ground states and coexisting 0+2states as well as excitation energies of the latter are also well reproduced. While the general agreement between calculated moments of inertia and those deduced from observed spectra confirms the prolate nature of the low-lying yrast states of all three isotopes(except the ground state of72Kr), the deviation at low spins suggests significant shape mixing. The role of triaxiality in describing shape coexistence and evolution in these nuclei is finally discussed.  相似文献   

14.
Clustering in nuclei is discussed putting emphasis on the investigation of the role of nuclear clustering in neutron-rich nuclei. The subjects we discuss include clustering in neutron-rich Be, B and C isotopes, clustering in the island of inversion around N = 20, and clustering in the region with A ≈ 40. Be isotopes present us typical examples of clustering in neutron-rich nuclei not only in their ground band states but also in their excited band states, for which we show the analyses based on antisymmetrized molecular dynamics (AMD). Clustering in Be isotopes near neutron dripline is intimately related to the breaking of the neutron magic number N = 8. In this connection we report our study about the possible relation of the clustering with the breaking of the neutron magic number N = 20 in the island of inversion including 32Mg and 30Ne. Our discussion is not only about the positive parity states but also about negative parity states. Recently in the latter half of sd shell and in the pf shell many excited rotational bands with large deformation have been found to exist. Since the first excited K π = 0+ and K π = 0- bands in 40Ca have been regarded as constituting inversion doublet bands having the 36Ar + α structure, and since the first excited K π = 0- band in 44Ti has been concluded to have 40Ca + α structure through the α transfer reaction and by using the unique α optical potential on 40Ca, it is important to investigate the role of α clustering in these newly-found rotational bands with large deformation. We will report the AMD study about this problem.  相似文献   

15.
It has been found that, in several nickel and zinc doubly even isotopes, a small number of levels are strongly and selectively excited at low energies by the (16O, 12C) α-transfer direct reaction, performed on iron and nickel targets near the Coulomb barrier. The behaviour of these states, together with calculations performed in the stretch scheme, strongly suggest that they involve a quartet structure, namely two protons and two neutrons in a highly symmetric configuration. The α-cluster model, which was successful in light nuclei, has now found a general and natural extension in medium-weight nuclei, in terms of quartet states which expresses the importance of four-nucleon correlations in nuclear structure.  相似文献   

16.
Using the well established binding energies of one and two valence neutrons in the two-center α+α system (forming the states in 9Be and 10Be*) the structure of these nuclear dimers and their rotational bands including those with more than 2 nucleons are discussed using published transfer reaction data for Be and Boron isotopes. Based on the 0 2 + state in 12C which is supposed to be an 3α particle chain at an excitation energy of 7.65 MeV and using the binding energy of these valence neutrons in 9Be and 10Be*, chain states in the system 12C* + x neutrons are constructed. The energy position of the lowest chain states are estimated and ways for their population in reactions on 9Be and using radioactive beams are proposed. It is expected that these states are metastable and could have appreciable branches for γ-decay. Further extrapolations to longer chain states (polymers) in neutron rich light isotopes are made.  相似文献   

17.
Since P-odd and T-odd asymmetries are generally not observed during the fissioning of unoriented target nuclei by polarized neutrons and oriented target nuclei by unpolarized neutrons, analogous asymmetries in angular distributions of products from binary and ternary fissioning of oriented target nuclei by cold polarized neutrons are thoroughly analyzed within the quantum theory of fission for finding these correlations. It is demonstrated that these correlations occur only when interference of the compound fissioning nucleus states with different spins is considered. Contributions from target nucleus orientations of different orders to coefficients of the asymmetries in question for fission fragments are estimated. Characteristics of analogous asymmetries for prescission and evaporation third particles are analyzed.  相似文献   

18.
Basic properties of the ground states of spherical nuclei are investigated in a nonlocal extended Thomas-Fermi approximation under the assumption of Skyrme forces. It is shown that, for nuclei occurring near the β-stability line, the binding energies, the root-mean-square radii, and the density distributions found on this basis agree well with experimental data. Binding energies, root-mean-square radii, and density distributions are also calculated for the ground states of nuclei lying far off the β-stability line and for superheavy elements. For the proton, the neutron, and the total particle density, the thickness of the diffuse layer is investigated as a function of the number of neutrons in tin isotopes.  相似文献   

19.
The ground-state properties of Sn, Te, Xe, and Ba isotopes have been systematically investigated in the framework of the deformed relativistic mean-field theory with the new parameter set FSUGold. The results show that FSUGold is as successful as NL3 * in reproducing the ground-state binding energies of the nuclei. The calculated two-neutron separation energies, quadrupole deformations, and root-mean-square (rms) charge radii are in good agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 82 . Detailed discussions on the binding energies, two-neutron separation energies, quadrupole deformations, rms charge radii and “binding energies” of the last neutrons are given.  相似文献   

20.
使用Gammasphere多探测器系统对252Cf裂变源瞬发γ射线进行γ-γ-γ和γ-γ(θ)符合测量,A~100(Z~40,N56)丰中子核区关于形状过渡、形状共存和形状突变的深入研究获得了新的进展。奇-Z核的系统研究揭示了从Z=39(Y)同位素的轴对称大四极形变到Z=43(Tc),44(Ru)和45(Rh)同位素中具有中等四极形变之大三轴形变的过渡。Nb(Z=41)同位素具有过渡核的特征。根据邻近同位素和同中素带交叉信息的系统性及推转壳模型(CSM)计算,Tc和Rh偶-N同位素中观察到的带交叉产生于一对h11/2中子的转动顺排。首次观察到100Nb(Z=41,N=59)的高自旋能级纲图和形变态,从而证实了100Nb中的形状共存,并确认,在Nb同位素链上,基态形状突变发生于N=58(球形)到N=59(大形变);而在Sr(Z=38),Y(Z=39)和Zr(Z=40)各同位素链上,基态形状突变均发生于N=59(球形)到N=60(大形变)。100Nb具有大形变基态,同现有理论预言相矛盾,其大形变的基态及转动带所具有的很大的和不规则的转动惯量具有重要的理论意义。对奇-质子Cs(Z=55)和La(Z=57)丰中子同位素八极激发的详细研究,发现了141,143,144Cs同位素链上电二极矩D0随中子数增加而减小的急剧变化,此前在145,147La中观察到的电二极矩D0的较缓和的减小似乎亦很陡地下延至148La。在Cs和La同位素中观察到的电二极矩D0的急剧下降很可能同偶-质子核146Ba和224Ra中观察到的电二极矩D0的急剧下降相类似,后者已获反射非对称平均场壳修正理论的成功解释。实验证明,141Cs具有很大电二极矩D0。141Cs和142Xe中观测到的很大的电二极矩D0和仅在141Cs中观察到的电二极矩D0的simplex量子数相关性需要进一步的理论研究。根据转动频率比值ω-(I)/ω+(I)的检定,同Xe同位素一样,认定Cs同位素中包括号143Cs的八极激发为八极振动,而在La同位素中存在八极形变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号