首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
具有两种不同阳离子的二元金属氧化物在钠离子电池中可发生可逆的多电子反应,是一类非常具有应用前景的高容量负极材料。在本项工作中,通过离子交换法和化学剥离法得到HTiNbO_5纳米片,采用水热法将其与蔗糖复合再经由后续热处理得到碳包覆的Ti_2Nb_2O_9纳米片材料。碳包覆的Ti_2Nb_2O_9纳米片可用作钠离子电池的负极材料,具有更高的电子导电性和多的反应活性点以及快速的离子传输通道,在50 m A?g~(-1)的电流密度下具有265.2 m Ah?g~(-1)的可逆容量。在0.5A?g~(-1)的大电流密度下,循环200圈之后比容量为160.9 m Ah?g~(-1) (容量保持率75.3%)。研究结果表明Ti_2Nb_2O_9/C纳米片在钠离子电池中具有出色的充放电性能和循环稳定性,为钠离子电池负极材料提供了可行的新选择。  相似文献   

2.
以聚苯乙烯(PS)胶晶作为铸模,采用纳米铸造工艺及后续煅烧的方法合成了三维有序大孔Fe_2SiO_4/SiO_2@C纳米玻璃陶瓷锂离子电池负极材料。溶胶-凝胶工艺产生的凝胶在650℃氩气氛炉中煅烧后,Fe_2SiO_4纳米晶体从含铁元素的SiO_2基玻璃中结晶析出,形成由Fe_2SiO_4纳米晶体、铁离子(Fe3+)修饰的玻璃态SiO_2和非晶碳组成的三维有序大孔纳米玻璃陶瓷。在50 m A·g~(-1)电流密度下进行充放电时,其放电容量可达450 m Ah·g~(-1)以上,电流密度增加到250 m A·g~(-1)时可逆放电容量仍旧稳定地保持在260 m Ah·g~(-1),而具有同样有序大孔结构和含碳量的非晶态SiO_2@C材料的放电比容量在50 m A·g~(-1)电流密度时仅为15 m Ah·g~(-1)。这些结果表明,Fe_2SiO_4纳米晶体及Fe~(3+)有助于SiO_2基玻璃陶瓷实现可逆储锂过程。  相似文献   

3.
采用水热法制备了Na_3V_2(PO_4)_2O_2F (NVPOF)钠离子电池正极材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电(GCD)等方法研究了其形貌、结构与电化学性能。结果显示,纯相NVPOF形貌规则,呈长1~3μm、宽300 nm~1μm、长宽比为2~3的四棱柱形貌。NVPOF具有2对平稳的充放电平台,在0.2C和2C电流密度下,放电比容量达到124.2和70.5 m Ah·g~(-1),经100次循环后,放电比容量仍有105.8和59.6 m Ah·g~(-1),容量保持率达到85.2%和84.5%,库仑效率基本在97%以上,且低温(0℃)电化学性能也有不错的表现。经还原氧化石墨烯(r GO)包覆提高电子电导率,NVPOF@r GO在0.5C和2C的室温放电比容量高达124.4和88.4 m Ah·g~(-1),且2C倍率下循环200圈后的比容量仍有78.7 m Ah·g~(-1),容量保持率高达89%,库仑效率始终保持在99%左右,显示出优异的倍率和循环性能。  相似文献   

4.
通过液相共沉淀法获得Zn和Co的前驱,经过600℃煅烧处理获得ZnCo_2O_4纳米颗粒组装的毛线团状的微球。电化学测试表明,在0.5 A·g~(-1)的电流密度下循环200次可逆比容量保持为965 m Ah·g~(-1);在0.8 A·g~(-1)的电流密度下循环350次可逆比容量保持为882 m Ah·g~(-1)。倍率性能测试表明在2 A·g~(-1)的电流密度时可逆比容量为736 m Ah·g~(-1)。  相似文献   

5.
采用一步水热法合成Nb_2O_5和Fe(Ⅲ)掺杂的五氧化二铌微纳米球(Fe-Nb_2O_5),并利用X射线衍射(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等测试手段分别对其结构和形貌进行了表征。结果发现,所合成的Fe-Nb_2O_5和Nb_2O_5均为正交晶相,Nb_2O_5为尺寸分布在50~300 nm之间的形貌不规则颗粒,而Fe-Nb_2O_5是由约50 nm的一次颗粒自组装而成的直径约为1μm的均匀微纳米球,即具有多级结构,其有利于增大电极材料与电解液的接触界面。电化学测试结果表明,Fe-Nb_2O_5的循环稳定性和倍率性能得到明显改善,在50 m A·g~(-1)电流密度下,100次循环后放电容量仍保持在193.2 m Ah·g~(-1),即使在5 A·g~(-1)的电流密度下,容量仍可达到108.4 m Ah·g~(-1)。并分析了其性能改善的原因。  相似文献   

6.
以硝酸铟和蔗糖为原料,依次经水热反应和550℃碳化制得In_2O_3纳米材料(nano-In_2O_3);将硫渗入nanoIn_2O_3得S/In_2O_3,其结构和微观形貌经SEM,TEM和XRD表征。将S/In_2O_3,导电炭黑和聚偏氟乙烯按质量比8∶1∶1制成正极材料(1);将1涂覆于铝箔上,锂片作参比电极,1 mol·L~(-1)LiPF_6的DMF/DOL(V/V=1/1)溶液为电解液,组装成锂硫半电池。采用循环伏安法和恒电流充放电法研究了S/In_2O_3的电化学性能。结果表明:在1.95 V和2.3 V处有两个还原峰,2.5 V处有一个氧化峰。电流密度为335 m A·g~(-1),首次放电比容量为1 357m Ah·g~(-1),库伦效率为82.75%。经80次充放电后,放电比容量为537 m Ah·g~(-1)。  相似文献   

7.
采用溶剂热法成功制备了纳米CuFe_2O_4-rGO复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学工作站对样品的结构、形貌及电容特性进行表征。结果表明,CuFe_2O_4纳米粒子均匀地分散在石墨烯片层间,其中CuFe_2O_4-20%rGO复合材料具有最优的电化学性能,当电流密度1 A·g~(-1)时,其比电容为1 952.5 F·g~(-1),当电流密度为1 A·g~(-1)时,CuFe_2O_4-20%rGO复合材料经1 000次充放电后的比电容保持率为86.17%。  相似文献   

8.
报道了Na_2Ti_3O_7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na_2Ti_3O_7纳米片。此外,腐蚀后的钦片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g~(-1)的电流密度下具有175mAh·g~(-1)的可逆容量,在2000mA·g~(-1)的电流密度下循环3000周后,其容量仍保持120 mAh·g~(-1),容量保持率为96.5%。Na_2Ti_3O_7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na_2Ti_3O_7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na_2Ti_3O_7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

9.
以V_2O_5空心球作为锂硫电池的正极材料,将其用于存储硫和限制多硫化物的穿梭效应。V_2O_5空心球的平均直径约为500 nm,为存储硫提供了更多空间并适应硫电极的体积变化。同时,V_2O_5对多硫化物具有很强的化学吸附性,可以有效地限制多硫化物的穿梭效应。由于中空结构增加了硫的存储,并通过化学键牢固地吸附多硫化物,使该锂硫电池同时具有高容量和良好的稳定性。V_2O_5/S作为正极的锂硫电池在0.1C倍率时显示出1 439 mAh·g~(-1)的高可逆容量,并在1C的倍率下循环300次后的容量约为600 mAh·g~(-1)。  相似文献   

10.
采用喷雾热解法合成了碳包覆的SnSb/C合金复合材料,利用X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)等方法对产物的物相和形貌进行了表征,其中SnSb/C颗粒为10 nm左右的复合材料(10-SnSb/C)作为钠离子电池负极时,表现出优异的循环和倍率性能。首圈放电达到722.1m Ah·g~(-1),首圈库仑效率86.3%,在100、1000、3000 m A·g~(-1)下比容量分别为607.7、645.4、452.2 m Ah·g~(-1),在1000 m A·g~(-1)电流下循环200周后可逆容量达到623 m Ah·g~(-1),容量保持率为95%。SnSb/C复合材料出色的储钠性能源于其完全被碳包裹的纳米结构,该结构可以有效提高活性物质的利用率,促进电子、离子的传导,并且抑制纳米粒子在长循环过程中的粉化和团聚。  相似文献   

11.
The development of human society and the continuously emerging environmental problems call for cleaner energy resources. Lithium-ion batteries, since their commercialization in the early 1990s, have been an important power source of mobile phones, laptops as well as other portable electronic devices. Their advantages include environment-friendliness, light weight, and no memory effect compared with lead-acid or nickel-cadmium batteries. Electrode materials play an important role in the performance of lithium-ion batteries. The traditional commercial anode material, graphite, has a theoretical specific capacity of 372 mAh·g-1 and working potential close to 0 V (vs Li+/Li), making it prone to the formation of lithium dendrite, which may cause short circuit especially when large current is applied. Another commercial anode material Li4Ti5O12, which also undergoes an intercalation reaction during lithiation process, has a theoretical specific capacity of 175 mAh·g-1 along with three lithium-ion intercalations per formula unit. This is relatively small, and it has a relatively high working potential of 1.55 V (vs Li+/Li), which reduces its output voltage and specific energy when assembled in full battery. To overcome the shortcomings mentioned above, it is essential to search for new anode materials that are low-cost, environment-friendly, and easy to synthesize. Silicate materials have gained widespread attention owing to their low cost and facile synthesis. Herein, we report for the first time a novel titanosilicate, NaTiSi2O6, synthesized by sol-gel and solid sintering. It is isostructural to pyroxene jadeite NaAlSi2O6, belonging to monoclinic crystal system with a space group of C2/c. By in situ pyrolysis and carbonization of glucose, nanosized NaTiSi2O6 mixed with carbon was successfully obtained with a specific surface area of 132 m2·g-1, calculated according to the Brunauer–Emmett–Teller formula. The specific charge/discharge capacity in the first cycle at current density of 0.1 A·g-1 is 266.6 mAh·g-1 and 542.9 mAh·g-1, respectively, with an initial coulombic efficiency of 49.1%. After 100 cycles, it retains a specific charge capacity of 224.1 mAh·g-1, corresponding to a capacity retention rate of 84.1%. The average working potential of NaTiSi2O6 is 1.2–1.3 V (vs Li+/Li), slightly lower than that of Li4Ti5O12. The reaction mechanism while charging and discharging was determined by in situ X-ray diffraction test as well as selected area electron diffraction. The results showed that NaTiSi2O6 undergoes an intercalation reaction during lithiation process, with two lithium-ion intercalations per formula unit. This makes NaTiSi2O6 a new member of the silicate anode material family, and may provide insights into the development of new silicate electrode materials in the future.  相似文献   

12.
采用溶胶-凝胶法制备了不同Pr掺杂量的Pr6O11-TiO2载体, 并以浸渍法制备了V2O5-MoO3/Pr6O11-TiO2催化剂. 活性评价结果表明, 该催化剂在220~400 ℃范围内具有良好的脱硝效率和N2选择性以及较强的抗SO2和H2O性能. 表征结果表明, 掺杂Pr可以提高V2O5-MoO3/TiO2催化剂的比表面积、 表面化学吸附氧物种浓度、 桥式硝酸盐物种和Brönsted酸位数量, 从而提高了催化剂上NOx的选择性催化还原(NH3-SCR)活性.  相似文献   

13.
采用溶剂热法制备了碳纳米管穿插的分级结构五氧化二钒空心球(VOCx). 使用XRD、SEM、循环伏安曲线和充放电曲线研究了不同碳纳米管量对产物结构、形貌和电化学性能的影响. 结果表明,碳纳米管的加入明显改善了VOC的倍率特性. 碳纳米管含量为7.1%时,0.5 A·g-1电流密度下,其比电容达到346 F·g-1,8 A·g-1电流密度时,其电容保持率可达75%. 与活性炭组装成混合电容器,在功率密度为700 W·kg-1时,能量密度达12.6 Wh·kg-1.  相似文献   

14.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

15.
由于正交相五氧化二铌(T-Nb2O5)为ReO3型层状结构,锂、钠离子可以在其(001)平面快速脱嵌,而在[001]方向的传输一般较难。本研究通过原位透射电子显微镜(Transmission Electron Microscope,TEM)方法研究钠在T-Nb2O5纳米片(001)面内及[001]方向的钠离子电化学嵌入行为,发现由于纳米片晶体存在大量的位错和畴界,钠离子可通过这些缺陷穿越(001)面扩散,并进而在深层的(001)面内快速扩散。同时,本研究还发现刚合成的T-Nb2O5纳米片在[001]方向上存在调制结构,存在交替分布的压应变和张应变区域,而钠离子的嵌入可以调节这些应变分布。  相似文献   

16.
采用溶剂热法制备前驱体,后经350 °C热处理,首次合成了空心结构的NiMn2O4微球以及不同含量氧化石墨烯包覆的Ni/Mn3O4/NiMn2O4@RGO复合材料. 电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 mA·g-1电流密度下,100次循环后放电比容量保持在187.8 mAh·g-1,且800 mA·g-1电流密度下的可逆容量高达149.9 mAh·g-1,明显优于NiMn2O4及其他石墨烯基复合材料. 研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.  相似文献   

17.
Nb2O5/C nanosheets are successfully prepared through a mixing process and followed by heating treatment.Such Nb2O5/C based electrode exhibits high rate performance and remarkable cycling ability, showing a high and stable specific capacity of ~380 mAh g-1 at the current density of 50 mA g-1(much higher than the theoretical capacity of Nb2O5).Further more,at a current density of 500 mA g-1,the nanocomposites electrode still exhibits a specific capacity of above 150 mAh g-1 after 100 cycles.These results suggest the Nb2O5/C nanocomposite is a high performance anode material for lithium-ion batteries.  相似文献   

18.
The development of high specific capacitance electrode materials with high efficiency, scalability and economic feasibility is significant for the application of supercapacitors, however, the synthesis of electrode material still faces huge challenges. Herein, graphene(G)/Fe2O3 nanocomposite was prepared via a simple hydrothermal method connected with subsequent thermal reduction process. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) results showed rod-like Fe2O3 nanoparticles were prepared and well-dispersed on graphene layers, providing a rich active site and effectively buffering the aggregation of Fe2O3 nanoparticles in the process of electrochemical reaction. The specific capacitance of the obtained G/Fe2O3 nanocomposite as negative electrode for supercapacitor was 378.7 F/g at the current density of 1.5 A/g, and the specific capacitance retention was 88.76% after 3000 cycles. Furthermore, the asymmetric supercapacitor(ASC) was fabricated with G/Fe2O3 nanocomposite as negative electrode, graphene as positive electrode, which achieved a high energy density of 64.09 W∙h/kg at a power density of 800.01 W/kg, maintained 30.07 W∙h/kg at a power density of 8004.89 W/kg, and retained its initial capacitance by 78.04% after 3000 cycles. The excellent result offered a promising way for the G/Fe2O3 nanocomposite to be applied in high energy density storage systems.  相似文献   

19.
设计高性能的可压缩电极是实现可压缩电容器器件的关键,碳海绵(CS)具有理想的压缩形变,但却受制于有限的容量。本工作以CS为可压缩基底,通过恒电流沉积及低温热处理技术,在CS骨架上均匀沉积了α-Fe_2O_3纳米片。复合电极中Fe_2O_3的负载量随沉积时间的延长逐渐增加,且在沉积16 h后达到饱和。系统地考察了CS-Fe_2O_3复合电极在不同压力下的可压缩性能,并在三电极体系中,通过循环伏安、恒电流充放电等方法研究了CS-Fe_2O_3复合电极在3.0mol·L~(-1)KOH电解液中的电容性能。结果表明,当复合电极CS-Fe_2O_3压缩率减小时,电极的内阻增大,比电容相应减小。CSFe_2O_3-12电极在电流密度为1 A·g~(-1)时的最大比电容为294 F·g~(-1),且经过10000次恒电流充放电后,电容量仍然能保持初始值的81%,是一种潜在的电化学性能稳定的可压缩超级电容器电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号