首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
报道了一种HBF4水溶液中的全铅液流电池,正、负电极电解液均采用Pb(BF42的HBF4水溶液.在酸性的四氟硼酸铅电解液中考察了石墨电极和玻碳电极作为工作电极的循环伏安性能,石墨电极较适于用作全铅液流电池的正、负电极.采用石墨电极作为电池的正、负电极并在四氟硼酸铅酸性电解液中进行充放电实验,其中Pb(BF42浓度分别为0.5、1.0和1.5 mol·L-1,且保持游离的HBF4浓度为1.0 mol·L-1.该电池为单液流电池,不需要隔膜分隔正、负极的电解液,电流密度为10、20和40 mA.cm-2,当限定充电容量为7.0 mAh.cm-2,放电电压截止到1.0 V时,平均库仑效率大于87%,平均能量效率大于68%;当电解液采用1.0或1.5 mol·L-1 Pb(BF42+1.0 mol·L-1HBF4水溶液时,在10及20 mA.cm-2电流下的能量效率最高可超过74%.  相似文献   

2.
全固态无负极锂金属电池(AFSSLB)是一种通过初次充电形成金属锂负极的新型锂电池,它的负极与正极容量比为1,能使任意锂化正极系统达到最大能量密度。无机固态电解质的引入使无负极锂金属体系兼具高安全性。然而,电池循环过程中的锂离子通量不均导致的界面接触损失和锂枝晶生长会不断加剧,从而造成电池循环容量迅速衰减。本文构筑了纳米化的银碳复合集流体,显著增强了全固态无负极锂金属电池中集流体-电解质界面的性能。使用该集流体的固态电池循环过程中接触良好,界面阻抗为~10?·cm-2。从而实现了超过7.0mAh·cm-2锂金属的均匀稳定沉积,并在0.25mA·cm-2的电流条件下实现循环200次以上。  相似文献   

3.
作为锂离子电池的理想替代品,钠离子电池因具有能源储备丰富、成本低廉等优点而受到人们的广泛关注。柔性便携式电子产品的发展亟需柔性储能器件的研制。因此,发展一种廉价、高性能的柔性钠离子电池负极材料成了科研工作者的共同目标。在此项工作中,我们通过简单的水热合成和热还原法发展了一种以柔性碳布为基底,与缺氧型的Na2Ti3O7纳米带(NTO)构成三维阵列结构的新型柔性钠离子电池负极材料。复合材料(R-NTO/CC)的导电性和活性位点得到提高,电化学性能也大幅提升,在200 mA·cm-2的电流密度下,实现100 mAh·cm-2的面积比容量,且经过200次循环后仍保留最初电容值的80%。此外,这种电极还具有优良的倍率性能,当电流密度提高到400 mA·cm-2时,仍保持69.7 mAh·cm-2的面积比容量,是未引入氧空位材料的三倍之多。这种三维缺氧的电极材料可有效提高载流子浓度,缩短离子传输通道,从而大幅提升电极的电化学性能。此工作为设计合成高储钠性能的新型的负极材料提供了一种实用有效的策略。  相似文献   

4.
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能. 电化学测试表明,材料在100 mA·g -1电流密度下,放电容量可以达到541.6 mAh·g -1,甚至在2000 mA·g -1的大电流密度下其放电比容量也可以维持在274.5 mAh·g -1. 另外,材料在100 mA·g -1电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 mAh·g -1和359.3 mAh·g -1,说明其具有良好倍率性能和循环稳定性能. 良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构. 碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.  相似文献   

5.
研究全钒液流电池的质子传导膜制备过程,提出高分子亲水/疏水相互作用诱导溶液相分离的成膜原理,进行制膜工艺放大,满足全钒液流电池的电堆制造与储能工程应用需要. 突破现有“离子交换”传质机理的限制,利用电解液中不同价态钒离子与氢离子相比,存在体积和荷电量的差异,通过离子“筛分”和“静电排斥”效应进行离子选择性渗透. 制成孔径分布在4 ~ 7 nm的聚偏氟乙烯质子传导膜,电导率为3.5×10-2 S•cm-1,爆破强度高于0.3 MPa,面积800 mm × 900 mm. 利用扩散实验测定膜对H+/VO2+离子选择性,选择性系数达到306. 利用该质子传导膜组装的15 kW电堆,充电/放电循环性能稳定,电流密度达到100 mA•cm-2,在700多个循环过程电流效率为93%,能量效率超过72%,具备产业化应用前景.  相似文献   

6.
以1.0 mol/L硫酸为介质,于0.8 V恒电位下,在纳米TiO2(Nano-TiO2)膜电极上实现了苯胺(Aniline)的电化学聚合,借助透射电镜、 X射线衍射、红外光谱等对制得的Nano-TiO2/聚苯胺(Nano-TiO2/PANI)复合膜进行了表征. 用Nano-TiO2│PANI作为二次电池的正极,Zn为负极,在不同的电流密度下对Zn│Nano-TiO2-PANI二次电池的充放电性能进行了研究. 结果表明,二次电池首次充电容量可达98.04 mA·h/g,充放电效率为91.67%,充放电曲线平稳.  相似文献   

7.
采用充放电测试和交流阻抗测试研究了硝酸锂作电解液添加剂对锂硫电池电化学性能的影响. 采用电子扫描显微镜观察分析了添加剂对锂负极的影响, 探讨了硝酸锂的作用机理.  结果表明, 采用硝酸锂作为锂硫电池电解液的添加剂, 可以在锂负极表面形成具有钝化负极活性表面及保护锂负极的界面膜.  该膜可以抑制电解液中高价态聚硫离子与锂负极的副反应, 避免在锂负极表面形成不可逆的硫化锂, 从而提高锂硫电池的循环性能和放电容量. 采用硝酸锂作添加剂的锂硫电池首次放电比容量达1172 mA?h/g, 循环100次比容量保持为629 mA?h/g.  相似文献   

8.
陈永红  魏亦军徐俊 《应用化学》2004,21(12):1285-1289
以 1 0mol/L硫酸为介质 ,于 0 8V恒电位下 ,在纳米TiO2 (Nano TiO2 )膜电极上实现了苯胺 (Aniline)的电化学聚合 ,借助透射电镜、X射线衍射、红外光谱等对制得的Nano TiO2 /聚苯胺 (Nano TiO2 /PANI)复合膜进行了表征。用Nano TiO2 │PANI作为二次电池的正极 ,Zn为负极 ,在不同的电流密度下对Zn│Nano TiO2 PANI二次电池的充放电性能进行了研究。结果表明 ,二次电池首次充电容量可达 98 0 4mA·h/g ,充放电效率为 91 6 7% ,充放电曲线平稳  相似文献   

9.
为了提高镍锰酸锂全电池的电化学性能,本文采用物理混合的方法在负极浆料中加入正硅酸乙酯(TEOS),并按m(TEOS)∶m(石墨)=0∶100、5∶100、10∶100、16∶100、20∶100的比例进行搅拌混合。 以镍锰酸锂为正极,石墨为负极,组装成502030型软包装锂离子电池,并对该电池进行恒流充放电和内阻等测试。 测试结果显示,0TEOS(m(TEOS)∶m(石墨)=0∶100)样品的电池内阻为159 mΩ,循环200圈后,容量保持率为52.6%,放电比容量为46 mA·h/g;16TEOS(m(TEOS)∶m(石墨)=16∶100)样品的电池为105 mΩ,65.7%和62.9 mA·h/g。 实验结果表明:通过物理混合的方法在负极浆料中加入TEOS,有利于在负极表面形成结构稳定的人工固体电解质膜(SEI膜),提高镍锰酸锂材料的循环和倍率性能。  相似文献   

10.
建立具有外置双饱和甘汞参比电极及双液流电池的实验装置系统.使用该装置可在同一时刻同时测定小型液流单电池充放电时的电池电压、电池正负极电位及正负极开路电位,进而计算充放电过程电池的欧姆内阻降(iR)及其正负极过电位.以石墨毡为电极、Nafion 117作隔膜的全钒液流单电池,在60 mA.cm-2电流密度下,每一充放电循环的平均iR降约占总电压损耗的74%,表明该电池的电压效率受制于电池的欧姆内阻.充放电曲线显示,电池放电终点之所以出现主要是由于电池负极电位在放电末期的快速上升而引起的.本文设计的全钒单电池于60 mA.cm-2下工作时,其电压及能量效率分别达89%和85%,表明该电池结构合理,且石墨毡是钒电池合适的电极材料.  相似文献   

11.
王璐  高学平 《电化学》2020,26(5):750
锂-硫电池具有高的理论质量/体积能量密度,因而成为最具发展潜力的高比能二次电池体系. 然而,由于硫载体通常采用轻质的碳纳米材料,导致硫基复合材料的振实密度和体积比容量均偏低,制约了电池体积能量密度的提升. 本文尝试采用具有高密度特征的钴酸锂(LiCoO2)作为硫的载体材料,以构筑高振实密度的硫基复合材料,进而提高硫正极的体积比容量. 研究显示,LiCoO2对可溶性多硫化物具有较强的吸附作用,能够促进硫的电化学转化,因而提高了硫的活性物质利用率和循环稳定性. 同时,由于具有高的振实密度(1.90 g·cm-3),S/LiCoO2复合材料的首周体积比容量高达1750.5 mAh·cm-3,是常规硫/碳复合材料的2.2倍. 因此,本文利用具有高密度特征的LiCoO2作为硫载体来提升硫复合材料的体积比容量,有助于实现锂-硫电池的高体积能量密度.  相似文献   

12.
石墨毡电极是组成钒电池的关键材料,其较低的电化学活性是造成钒电池功率密度较低的关键因素之一. 本论文采用一种简便的石墨毡电极分步氧化活化法,先将石墨毡在高锰酸钾溶液中进行氧化,后置于活化溶液中激发其反应活性. 通过对处理后的石墨毡进行循环伏安、交流阻抗测试、XPS以及SEM表征,发现氧化时间和活化溶液组成是影响电极性能的因素,在本文中,先经过3天氧化时间,后在配比为3:1的活化溶液中处理的电极,较其他方法处理的电极,电荷传递电阻明显降低,其与溶液之间的接触电阻最低,为7.33 Ω·cm 2,氧化还原峰值比更接近于1,有效提高了反应的活性与可逆性,经X射线光电子能谱分析发现性能提高的原因与表面含氧官能团数目增加有关. 单电池性能测试结果进一步证实,利用该方法处理的石墨毡为电极的单电池,较未经处理的电池相比性能更优,有更高的放电容量和能量效率,在100 mA·cm -2电流密度下,能量效率较未处理电极高出7.47%. 与热处理法、酸处理法及电化学氧化法相比较,该方法不需要辅助设备,不消耗能源.  相似文献   

13.
设计了一种新型Ce-Cu氧化-还原液流电池,研究了Ce3+/Ce4+和Cu0/Cu2+氧化还原电对的循环伏安特性,优化了电解液及电极材料,进而组装出液流电池,测试了电池的充放电性能。 结果表明,在45 mA恒电流充/放电条件下,电池放电平台电压约为1.0 V,库伦效率约100%,能量效率为75%以上,电池可稳定循环100次。  相似文献   

14.
采用目标调控的阳极氧化工艺制备了超大比表面、管与管相互分离的有序TiO2纳米管阵列(TiO2 NTAs)基体,进而分别采用电化学氢化法和循环浸渍沉积法对晶化退火后的TiO2 NTAs实施电化学氢化和高比电容MnO2沉积的双重功能化改性,调控构筑了一种新型MnO2/H-TiO2纳米异质阵列电极材料。利用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(TRTEM)、X射线衍射仪(XRD)、X光电子能谱仪(XPS)、拉曼光谱(Raman)和电化学工作站等对样品进行综合表征与超电容特性测试,结果表明:电化学氢化改性有效提高了H-TiO2 NTAs的导电性和电化学特性,当电流密度为0.2 mA·cm-2时H-TiO2 NTAs的面积电容达到7.5 mF·cm-2,是相同电流密度下TiO2 NTAs的75倍;经过2个浸渍循环所获得的MnO2/H-TiO2 NTAs-2样品在电流密度为3 mA·mg-1时比电容可达481.26 F·g-1,电流密度为5 mA·mg-1时循环充放电1000圈后比电容仅下降约11%。  相似文献   

15.
通过溶液流延法制备了磺化聚醚醚酮/锂皂石(SPEEK/Lap)复合膜, 对其物理化学性质、 机械性能、 化学稳定性及单电池性能进行了测试. 在SPEEK基质中引入的Lap有效改善了复合膜的质子传导率、 溶胀率和机械性能. 当Lap添加量(质量分数)从0.2%增到1.5%时, 复合膜的质子传导率随之增加(19.9~23.6 mS/cm). SPEEK/Lap-0.2复合膜的自放电时间为57.2 h, 是Nafion 117膜的2.4倍和纯SPEEK膜的1.5倍. 在80 mA/cm 2电流密度下, SPEEK/Lap-0.2复合膜的电压效率(VE, 86.5%)和能量效率(EE, 84.0%)明显高于Nafion 117膜(VE: 83.8%, EE: 80.7%)和纯SPEEK膜(VE: 81.4%, EE: 78.9%). 同时, SPEEK/Lap-0.2复合膜经100次充放电循环测试后具有良好的循环稳定性和结构稳定性.  相似文献   

16.
析氧反应(OER)催化剂在锌空气电池(ZABs)储能过程中起着关键作用.我们开发了一种新型非贵金属基自支撑碳纳米纤维催化剂(NiδFe4-δ-CNF).首先,以聚乙烯吡咯烷酮、过渡金属乙酸酯、N,N-二甲基甲酰胺为原料,采用静电纺丝法制备了网状前驱体.随后,通过高温退火处理,将其转化为三维(3D)多孔结构材料.合成的N...  相似文献   

17.
Proton exchange membrane (PEM) is a key component of vanadium redox flow battery (VRB), and its proton/vanadium selectivity plays an important role in the performance of a VRB single cell. Commercially available perfluorosulfonic acid (Nafion) membranes have been widely used due to their excellent proton conductivity and favorable chemical resistance. However, the large pore size micelle channels formed by the pendant sulfonic acid groups lead to the excessive penetration of vanadium ions, which seriously affects the coulombic efficiency (CE) of the single cell and accelerates the self-discharge rate of the battery. Additionally, the expensive cost of Nafion is also an important reason to limit its large-scale application. In this paper, the dense and low-cost hydrocarbon polymer polybenzimidazole (PBI) is used as the matrix material of the PEM, which is doped with phosphotungstic acid (PWA) to acquire excellent proton conductivity, and the intrinsic high resistance of PBI for vanadium ions is helpful to obtain high proton/vanadium selectivity. Considering the enormous water solubility of PWA and its easy leaching from membrane, organic polymer nano-Kevlar fibers (NKFs) are utilized as the anchoring agent of PWA, which achieves good anchoring effect and solves the problem of the poor compatibility between inorganic anchoring agent and the polymer matrix. The formation of PWA functionalized NKFs was characterized by scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. The anchoring stability of NKFs for PWA was evaluated by UV-Vis spectroscopy. The characterizations including water uptake, swelling ratio, ion exchange capacity, proton conductivity, vanadium ion permeability and ion selectivity were performed to evaluate the basic properties of the membranes. At the same time, the charge-discharge, self-discharge and cycle performance of single cell assembled with the composite membrane and recast Nafion were tested at various current densities from 40 to 100 mA∙cm-2. Simple tuning for the filling amount of NKFs@PWA gives the composite membrane superior ion selectivity including an optimal value of 3.26 × 105 S∙min∙cm-3, which is 8.5 times higher than that of recast Nafion (0.34 × 105 S∙min∙cm-3). As a result, the VRB single cell assembled with the composite membrane exhibits higher CE and significantly lower self-discharge rate compared with recast Nafion. Typically, the CE of the VRB based on PBI-(NKFs@PWA)-22.5% membrane is 97.31% at 100 mA∙cm-2 while the value of recast Nafion is only 90.28%. The open circuit voltage (VOC) holding time above 0.8 V of the single cell assembled with the composite membrane is 95 h, which is about 2.4 times as long as that of recast Nafion-based VRB. The utilization of PBI as a separator for VRB can effectively suppress the penetration of vanadium ions, achieve higher proton/vanadium selectivity and superior battery performance as well as reduce the cost of the PEM, which will play an active role in the promotion of VRB applications.  相似文献   

18.
王健  轩文辉  何倩  蒋金霞  周圆圆  聂瑶  廖强  邵敏华  丁炜  魏子栋 《电化学》2023,29(1):2215003-55
质子交换膜燃料电池(PEMFC)是一种强耦合、复杂非线性、动态的、多输入多输出的能量转换装置,不容易达到或保持理想的工作状态。在动态的PEMFC的工作状态下,其输出的电流和电压是振动的、不稳定的,会对负载的使用和寿命造成很大的影响,严重时亦可损坏负载。该波动的电流或电压输出不仅直接决定着发电系统的成本,而且影响着有效的能量转换效率及电子原件和设备的寿命。基于此,本工作针对燃料电池动态特性及动态排水空间受限导致其电流不规则波动,进而影响输出电能品质和燃料电池系统及其他电子元件的寿命和维护成本等问题,开发了一种外延生长的方法制备排水空间可调控的抗溺水电极,通过调控载体的成核位点密度,形成一种具有不同排水空间的类超晶体结构微米级铂基催化剂。该催化剂制备的电极不仅表现出极佳的抗溺水性,在极低的电流振幅(25 mA·cm-2)下持续稳定的输出高品质电能,同时提高了铂的利用率,使其组成的MEA比功率密度达到11.69 W·mgPt-1,表现出极高的应用潜力。  相似文献   

19.
以双酚芴为结构单元合成双酚型聚醚醚酮聚合物,聚醚醚酮经浓硫酸磺化在双酚芴结构单元中引入磺化基团制备出聚醚醚酮质子交换膜(SF-PEEK)。 用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H NMR)、热重分析(TG)、原子力显微镜(AFM)和扫描电子显微镜(SEM)等方法对聚醚醚酮质子交换膜的结构进行表征。 结果表明,磺酸基团被成功地在聚醚醚酮侧基上,SF-PEEK膜具有明显的亲水疏水微相分离形貌,磺酸基团相互聚集成形成离子通道。 SF-PEEK膜离子交换容量(IEC)达到1.97 mmol/g时,其电导率达到4.15×10-2 S/cm,略低于Nafion117膜的5.67×10-2 S/cm,但其钒离子渗透率仅为Nafion117膜的20.1%,表现出极好的离子选择性。 在钒流电池测试中,SF-PEEK膜在不同电流密度下库伦效率均高于Nafion117膜,其中IEC为1.97 mmol/g的SF80-PEEK608(80为SF的物质的量分数,608为60 ℃反应8 h)库伦效率在电流密度为40 mA/cm2时达到最大值80.9%,高于Nafion117膜的78.8%。 在自放电测试中,以SF80-PEEK608膜组装的电池的自放电时间为90 h,高于Nafion117膜的57 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号