首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
 在激光硬杀伤防护体系研究中,制备了鳞片石墨改性环氧树脂涂层,分析了它与辐照激光能量耦合作用规律,研究了其热烧蚀性能、隔热性能等抗激光辐照性能,并对不同参数激光辐照后该材料的损伤形貌进行宏观、微观分析,确定了损伤阈值与损伤形式。实验结果表明:石墨改性环氧树脂具有优良的抗强激光辐照性能,连续激光辐照下功率密度损伤阈值高于2 kW/cm2;高温下与激光能量耦合系数仅为10%左右,稳定热烧蚀率低至μg/J量级;具备优良的纵向隔热性能,高温下热导率在10 W·K-1·m-1以下;低功率密度激光辐照下损伤形式为轻微氧化,高功率密度激光辐照下则以汽化烧蚀为主;材料制备工艺简单,成本低廉,与被加固材料界面结合良好。  相似文献   

2.
面向激光的应用新场景,搭建了Ma=6的切向空气流与连续激光辐照协同作用的材料损伤试验平台,开展了有无高超声速气流作用下激光对材料的致伤特性及其对气流流场的干扰等方面研究,给出了静止空气和Ma=6风洞模拟气流环境中涂层材料的破坏特性以及材料损伤产生的干扰流动结构。与静止空气中激光辐照材料烧蚀现象相比,在高超声速空气流作用时,涂层材料受激光辐射产生的破坏特征明显不同,激光功率较小时涂层材料呈现出更大的破坏面积,激光功率较大时涂层材料形成更深的烧蚀坑。受材料烧蚀扰动,流场经过激光辐照产生烧蚀结构时形成了类似于热射流或小突起物的绕流流动结构。这又反向影响材料的烧蚀,导致激光光斑辐照区域的上下游及横侧向产生与静态烧蚀明显不同的特征。这些新特征对于工程应用具有重要指导作用。  相似文献   

3.
石墨-二氧化硅作为无机添加材料,广泛应用于各类航空航天器烧蚀涂层领域,其在高温下具有较高的反应吸热焓,在高能激光烧蚀领域具有良好的应用前景。目前,关于石墨-二氧化硅的高能激光烧蚀研究较少,尤其在高能激光烧蚀中的反应时间和烧蚀阈值难以确定。针对此问题,利用近红外探测器对激光辐照样品表面的散射光进行实时探测,并对其散射光曲线进行微分拟合处理。基于此散射光信号,结合样品烧蚀后的形态结构分析,研究了石墨-二氧化硅在不同激光功率密度下的反应时间阈值。研究结果表明:在激光输出功率密度为500 W/cm~2持续辐照10 s时,散射光拟合曲线持续升高无突变,表明未发生明显的烧蚀;当激光功率密度升高至1 000~1 500 W/cm~2时,散射光微分拟合曲线出现明显转折点,对应的反应时间阈值分别为1.5 s和0.8 s。  相似文献   

4.
使用非平衡测控溅射技术沉积了类金刚石薄膜,对比了外加偏置电场前后薄膜的抗激光损伤表面形貌变化,发现薄膜施加偏置电场后,薄膜的激光损伤区域内有大量丝状薄膜,损伤形貌存在明显不同,损伤面积减小,薄膜的激光损伤情况得到改善。这表明外加偏置电场对薄膜的损伤有影响,激光在薄膜中激励产生的光生电子在电场作用下产生快速漂移,间接降低了激光辐照区域内的局部能量密度,减缓了薄膜的石墨化,提高了薄膜的抗激光损伤能力。  相似文献   

5.
针对航空激光防护技术研究需求,开展了复合涂层材料的激光烧蚀效应综合研究。采用圆棒固体激光器作为测试光源,搭建了具有在线温度测量功能的烧蚀实验平台。在此基础上,对聚碳硅烷(PCS)涂层样品开展了激光烧蚀实验。通过对烧蚀区域形貌和温度数据的对比分析,证明了PCS复合材料具备显著的激光防护作用。同时,从理论方面对涂层的激光防护机理进行了研究,基于材料热传导方程,建立了激光烧蚀过程的热力学模型,对温度场变化进行了模拟。研究结果表明,在复合涂层的保护下,kW级激光仅产生百℃的金属基底升温。  相似文献   

6.
利用Nd∶YAG调Q单脉冲激光和自由脉冲激光对硬膜窄带干涉滤光片进行激光损伤阈值的测试,并且采用表面热透镜技术测量了滤光片的吸收率。实验发现:窄带干涉滤光片的吸收率和激光损伤阈值强烈依赖于辐照激光波长与窄带干涉滤光片通带的相对位置;在调Q单脉冲激光作用下,不同中心波长的滤光片损伤形貌存在明显的差别,而在自由脉冲激光作用下,各滤光片的损伤形貌则趋于相同,均表现为典型的热熔烧蚀破坏。根据实验结果,结合损伤形貌,通过驻波场理论对激光作用下滤光片内电场分布的分析与模拟,探讨了两种激光模式作用下滤光片的损伤特征和损伤机理的不同特点。  相似文献   

7.
为了开展激光吸收涂层性能研究,建立了激光加载吸收涂层样品模型,根据材料物性参数模拟了激光能量耦合过程,分析了不同参数激光加载条件下的温升情况。对铜基底表面碳氮化硅涂层开展了反射特性研究,并通过激光辐照实验,开展了涂层样品的抗激光损伤技术研究,得到了强激光辐照下涂层的温度阈值。本文的研究内容为激光能量测量装置涂层选材及参数设计提供了技术支持。  相似文献   

8.
《光子学报》2021,50(6)
为了探究皮秒激光加工金刚石的特征和材料去除机理,开展了皮秒激光加工CVD单晶金刚石微槽的试验和温度场仿真研究。利用场发射扫描电子显微镜检测了金刚石微槽表面和内部的微观形貌,实验结果表明,金刚石微槽边缘出现了微小崩边和微裂纹,微槽内部形成了周期约为255 nm和495 nm的纳米条纹。通过测量金刚石微槽宽度、深度、体积,得到了皮秒激光烧蚀金刚石的阈值、烧蚀速率和材料去除率。对金刚石微槽底部进行拉曼分析,发现皮秒激光加工金刚石是通过表面石墨化进行的,并且随着激光能量密度的增加,石墨峰出现了明显的红移。理论计算得到皮秒激光烧蚀金刚石的石墨层厚度约为88.7 nm。皮秒激光烧蚀金刚石温度场仿真结果表明,皮秒激光辐照能量主要分布在金刚石的表面,而通过热传导进入到金刚石内部的激光能量极少,因此皮秒激光加工金刚石的热影响区极小,导致其产生的石墨层厚度小于100 nm。  相似文献   

9.
 研究了CO2激光对单晶硅太阳能电池的辐照效应,并对其损伤机理进行了分析。在激光功率密度较低而不能使电池产生物理损伤时,电池的性能会因在被辐照过程中温度的升高而产生暂时性降低;当激光功率密度高到使电池产生物理损伤时,电池的输出性能便产生永久下降。通过对比激光辐照前后电池伏安特性曲线和输出功率曲线的变化情况,结合对损伤形貌的分析,表明:当电池被物理损伤之后,电池的性能会出现大幅度下降,硅PN结的严重烧蚀破坏是主要原因。  相似文献   

10.
利用共轭反射计装置,开展了真空环境中激光作用下环氧/硅树脂双层结构复合涂层的1.3μm反射特性研究,测量得到了涂层反射率随样品背表面温度的变化曲线。通过有限元分析和界面热阻修正得到了反射率随涂层温度的变化关系,探讨了反射率随温度的变化机理。研究结果表明,红外连续激光损伤环氧/硅树脂复合涂层,主要表现为底漆热解引发的鼓包分层和面漆热解导致的烧蚀变色;常温下涂层对1.3μm激光的反射率约为0.80,激光辐照初始时变化不明显,鼓包前后出现波动,测量区涂层鼓包、烧蚀后反射率显著下降,最终保持在一个相对较低值;反射率变化与涂层热解过程、损伤方式密切相关,涂层对1.3μm激光的反射率变化存在3个特征温度,分别对应底漆热解、面漆热解和表面状态趋于稳定时的温度。  相似文献   

11.
The effect of λ/2 SiO2 overcoat on the laser damage characteristics of HfO2/SiO2 high-reflector (HR) coatings is investigated with 1-on-l and N-on-1 laser damage test methods. The laser damage surface of 1-on-l is analyzed by a step analyzer. The surface morphologies show that laser damage makes the coating damaged area protrudent and rough for HR coating without λ/2 silica overcoat, but concave and smooth for HR coating with A/2 silica overcoat. The result of 10-on-l multi-pulse irradiation on the same point of the coating shows that there is an energy density stage on the damage curve. If the laser energy density is within the range of the stage, HfO2/SiO2 HR coatings with λ/2 silica overcoat will not be damaged more than 2 times for multi-shots, and the surface damages are very slight so that there is no impact on the coating performance. Another interesting result is that the energy density stage extends from the damage threshold to the point of about 3 times of threshold, which is similar to the  相似文献   

12.
A mechanism for photographitization of a free diamond surface is proposed. The quantum-kinetic rate of this process is determined. The graphitization rate is close to zero if the activation energy of the graphitization process is taken as being equal to the binding energy of a carbon atom with the surface (i.e. equal to the sublimation energy of a carbon atom). On the contrary, if the activation energy is close to the energy of C–C bonds, the graphitization process may occur at a noticeable rate and be observed under ‘relatively smooth’ experimental conditions. The temperature rise leads to a considerable increase in the graphitization rates. Preliminary experimental data on the low-rate laser ablation of diamond are presented to support the proposed model of photographitization. An early stage of laser-induced graphitization in the bulk of diamond is also considered. It is found that the nucleation of a ‘tiny graphite drop’ is possible in the bulk of the diamond inside the focal area of a laser beam; the ‘graphite drop’ growth causing the appearance of mechanical stresses in the surrounding regions. The maximum size of the graphite drop is determined, which, when exceeded, leads to mechanical damage of the sample and to a change in the mechanism of laser graphitization. An evident mechanical criterion for laser-induced damage of diamond is proposed. Received: 2 October 2002 / Accepted: 5 October 2002 / Published online: 29 January 2003 RID="*" ID="*"Corresponding author. E-mail: stvn@stankin.ru  相似文献   

13.
Low emissivity is the complex system and polymer binder is one of the most important factors that affect optical and mechanical properties of the coating. Low infrared emissivity coatings were prepared by using flake aluminum particles and three types of polymer resins as fillers and binders, respectively. The influence of polymer binder viscosity on pigment particles distribution, surface morphology and infrared emissivity of the coating was systematically investigated. The results indicate that infrared emissivity of the coating can be strongly affected by the resin viscosity at the same preparation condition, which induces different aluminum particles distribution and surface morphology of the coating. Low resin viscosity is helpful for aggregating pigments and reducing the top polymer layer thickness near the surface, thus the infrared emissivity is reduced. If the resin viscosity value is decreased by two orders of magnitude, the infrared emissivity values would be reduced as much as 0.2. Additionally, a theoretical model is proposed to account for this mechanism, which indicates that sedimentation, evaporation and diffusion play important roles in forming different aluminum particles distribution during the drying process of the coating.  相似文献   

14.
本文首先介绍了激光武器在未来战争中的突出地位和发展现状,阐明了高能激光束与目标材料相互作用时的热效应毁伤机理;总结了基于等离子喷涂的反射型激光防护涂层的研究进展,包括等离子喷涂金属涂层和陶瓷涂层的研究进展、以及各自的技术特点和防护效果,为高能激光防护领域的研究提供了借鉴。研究结果表明,控制金属涂层在激光辐照过程中的氧化现象能有效地提高涂层的激光防护性能,同时具有优异反射性能的新型陶瓷涂层在高能激光防护领域中有较好的发展前景。  相似文献   

15.
施曙东  李伟  杜鹏  王萌  宋峰  刘淑静  陈念江  赵鸿  杨文是 《中国物理 B》2012,21(10):104209-104209
In this paper,we investigate laser cleaning using a flattened top laser to remove paint coating from a metal substrate.Under the irradiation of a flattened top laser,the coating paint of the metal substrate can be removed efficiently by laser induced ablation,stress,and displacement force.The temperature distribution,stress,and displacement are calculated in the coating layer and substrate using finite element analysis.The effects of a Gaussian laser and a flattened top laser and the results of different diameters of laser spot are compared.The investigation shows that the flattened top laser can reduce the substrate damage and enhance the cleaning efficiency.This method meets the need of large area industrial cleaning applications by optimizing the flattened top laser parameters.  相似文献   

16.
The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO_2 laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO_2 laser secondary treatment.  相似文献   

17.
A new method for high-quality hydroxyapatite (HAp) coating is developed, the laser-assisted laser ablation method. In this method, two lasers are used. One is used for ablation of a HAp target. The other, the assist laser, is used to irradiate a Ti substrate surface. The effects of the assist laser irradiation are to anneal the HAp coating and to improve its adhesive strength to the Ti substrate. The quality of the HAp coating depends on the delay time of the assist-laser irradiation. HAp coatings obtained at a delay time of 10 microseconds or more are more amorphous. It was confirmed that the amorphous part of a coating dissolves in simulated body fluid, while the crystalline part does not. The value of the Ca/P ratio in a coating obtained at a delay time of a few microseconds is close to the stoichiometric value. PACS 81.16.Mk  相似文献   

18.
Interfacial modification for carbon fiber (CF) reinforced polyarylacetylene (PAA) resin, a kind of non-polar, was investigated. The high carbon phenolic resin was used as coating to treat the surface of CF after oxidation. Atomic force microscopy (AFM) with force modulation mode was used to analyze the interphase of composite. The interlaminar shear strength (ILSS) and mechanical properties of CF/PAA composites were also measured. It was found that the CF/PAA composites treated with oxidation and coating after oxidation had transition area between carbon fiber and PAA resin. The existence of transition area led to the improvement of interfacial performance of composites. Specially, the thickness and stiffness of interphase of composite treated with coating after oxidation were more suitable for CF/PAA composites. Thus, the composite treated with coating after oxidation had the highest value of ILSS and the best mechanical properties.  相似文献   

19.
Laser-induced graphitization on a diamond (111) surface   总被引:2,自引:0,他引:2  
We report an atomistic simulation study of laser-induced graphitization on the diamond (111) surface. Our simulation results show that the diamond to graphite transition occurs along different pathways depending on the length of the laser pulse being used. Under nanosecond or longer laser pulses, graphitization propagates vertically into bulk layers, leading to the formation of diamond-graphite interfaces after the laser treatment. By contrast, with femtosecond (0.2-0.5 ps) laser pulses, graphitization of the surface occurs layer by layer, resulting in a clean diamond surface after the ablation. This atomistic picture provides an explanation of recent experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号