首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用双水平直接动力学方法,在MCG3-MPWB//M06-2X/aug-cc-pVDZ水平上研究了CF_2ClC(0)OCH_2CH_3+OH的微观反应机理.得到了反应物CF_2ClC(O)OCH_2CH_3的5种稳定构象(RCl~RC5),并对每一构象考察了发生在-CH_3-和-CH_2-基团上的所有可能氢提取反应通道.利用改进的变分过渡态理论(ICVT)结合小曲率隧道效应校正(SCT)计算了各反应通道的速率常数,分析了各构象反应位点选择性.结果表明,对于构象RCl和RC2,低温时氢提取反应主要发生在-CH_2-基团上;而对于构象RC3RC4和RC5,发生在-CH_3基团上的氢提取反应通道在整个温度区间内占绝对优势.根据Boltzmann配分函数计算总包反应速率常数,在298 K温度下计算的体系总包反应速率常数与实验值相符,进而给出200~1000 K温度范围内拟合了速率常数的三参数Arrhenius表达式:k_(overall)=5.45×10~(25)T~(4.54)exp(-685/T).  相似文献   

2.
利用密度泛函理论直接动力学方法研究了反应CH3OCF2CF2OCH3+Cl的微观机理和动力学性质. 在BB1K/6-31+G(d,p)水平上获得了反应的势能面信息, 计算中考虑了反应物CH3OCF2CF2OCH3两个稳定构象(SC1和SC2)的氢提取通道和取代反应通道. 利用改进的正则变分过渡态理论结合小曲率隧道效应(ICVT/SCT)计算了各氢提取通道的速率常数, 进而根据Boltzmann配分函数得到总包反应速率常数(kT)以及每个构象对总反应的贡献. 结果表明296 K温度下计算的kT(ICVT/SCT)值与已有实验值符合得很好. 由于缺乏其他温度速率常数的实验数据, 我们预测了该反应在200-2000 K温度区间内反应速率常数的三参数表达式: kT=0.40×10-14T1.05exp(-206.16/T).  相似文献   

3.
采用密度泛函理论BB1K/6-31+G(d,p)计算了反应CF3CH2CH3+OH各反应通道上驻点的稳定结构和振动频率, 并分别在BMC-CCSD, MC-QCISD和G3(MP2)水平上进行了单点能校正. 运用变分过渡态理论, 在BMC-CCSD//BB1K, MC-QCISD//BB1K, G3(MP2)//BB1K以及BB1K水平上计算了各反应通道的速率常数, 讨论了-CH2和-CH3基团上H提取通道对总反应的贡献, 并与已有实验和理论结果进行了对比. 计算结果表明, BMC-CCSD水平上的速率常数与实验测量值符合得很好, 进而给出了该水平上反应在200~1000 K温度范围内速率常数k(cm3?molecule-1?s-1)的三参数表达式: k=1.90×10-21T3.21exp(-292.62/T).  相似文献   

4.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

5.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

6.
利用双水平直接动力学方法对反应CH3SH+H的微观机理和动力学性质进行了理论研究.对于此反应的三个反应通道,即—SH和—CH3基团上的两个氢提取通道及一个取代通道,在MP2/6-311+G(d,p)水平上优化得到了各稳定点的结构及振动频率,并在G3(MP2)水平上进行了单点能量计算以获得更精确的能量信息;在此基础上运用结合小曲率隧道效应校正的变分过渡态理论(CVT/SCT)计算了各反应通道在220-1000 K温度区间的速率常数.计算结果表明提取—SH基团上H的反应通道R1在整个反应温度区间都是主要通道,而随着温度的升高,低温下的次要反应通道——取代通道R3变得越来越重要,并且在高温下将成为一个竞争的反应通道;提取—CH3基团上H的反应通道(R2)由于具有较高的反应能垒,因而,其对总反应速率常数的贡献可以忽略.计算得到的总反应速率常数与已有的实验值符合得很好,进而我们预测了该反应在220-1000 K温度范围内速率常数的表达式为:k=5.00×10-18T2.39exp(-119.81/T),为将来的实验研究提供参考.  相似文献   

7.
应用密度泛函理论(DFT)对CH3SS与OH自由基单重态反应机理进行了研究.在B3PW91/6-311+G(d,p)水平上优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,用内禀反应坐标(IRC)计算和频率分析方法对过渡态进行了验证.在QCISD(T)/6-311++G(d,p)水平上计算了各物种的单点能,并对总能量进行了零点能校正.研究结果表明,CH3SS与OH反应为多通道反应,有5条可能的反应通道.反应物首先通过不同的S—O键相互作用形成具有竞争反应机理的中间体IM1和IM2.再经过氢迁移、脱氢和裂解等机理得到主要产物P1(CH2SS+H2O),次要产物P2(CH2S+HSOH),P3(CH3SH+1SO)和P4(CH2SSO+H2),其中最低反应通道的势垒为174.6kJ.mol-1.  相似文献   

8.
在G3B3, CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理. 在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型, 通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系. 在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量, 得到了反应势能面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST, kCVT和kCVT/SCT. 研究结果表明, 该反应体系共存在5个反应通道, 其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低, 为主要反应通道. 动力学数据也表明, 该通道在200~3000 K计算温度范围内占绝对优势, 拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T) cm3&;#8226;molecule-1&;#8226;s-1.  相似文献   

9.
采用密度泛函B3LYP/6-311G(d,p)方法对CH3F与C2H3的反应体系进行了理论研究,获得了反应的势能面信息及可能的微观机理.在QCISD(T)/6-311++G(d,p)水平上精确计算了各反应物种的单点能.结果表明,除抽提氢反应外,标题反应还存在抽提氟(R1)、消氟化氢(R2)、消氢(R3)和自由基形成(R4)四类反应.在QCISD(T)/6-311++G(d,p)//B3LYP/6-311G(d,p)水平上,R1,R2,R3和R4反应的能垒分别是163.9,152.2,209.8和224.2kJ·mol-1,相应反应能为-56.6,-164.3,-2.7和-156.0kJ·mol-1,所有反应均放热,为热力学允许的反应.  相似文献   

10.
贫氢分子CnH是燃烧火焰、行星大气中的重要的中间体.这些分子与其它一些分子或自由基的反应在星际化学中起着非常重要的作用.虽然这些分子的电子结构和光谱性质已经进行了广泛的研究,但是研究这些反应的机理和动力学性质也是亟需的.因此,我们采用直接动力学方法对线性分子丁二炔自由基C4H(CCCCH)夺氢气(H2)分子中HAT的反应的微观机理和动力学性质进行了理论研究.本研究分别在BB1K/6-311+G(2d,2p),B3LYP/6-311+G(2d,2p)和M06-2x/6-311+G(2d,2p)水平上优化得到了各稳定点的结构及振动频率.为了得到更为可靠的反应能量和势能面信息,在BB1K/6-311+G(2d,2p)优化结构的基础上用CCSD(T)/aug-cc-pVTZ水平进行了单点能量校正.对于此反应研究了两条不同的氢吸附通道,C4H(C1C2C3C4H)中的C1和C4分别吸氢,即通道1(R1)和通道2(R2).计算得出:通道1和通道2的能垒分别为3.58 kcal/mol和26.56 kcal/mol,结果表明C4H中C1端吸氢是主要通道.反应过程中的电子转移可以为理解氢原子转移(HAT)提供重要的线索,因此,我们利用NBO对反应过程中的电子转移行为进行了详细的分析.本工作运用经典过渡态理论(VTST)与变分过渡态理论(CVT)和变分过渡态理论结合小曲率隧道效应校正(CVT/SCT)的方法计算了该反应在40~1000 K温度区间的速率常数.除对于最低频率的配分函数采用了阻尼内转动近似外,其它频率都采用谐振子模型处理.计算得到的总的CVT/SCT反应速率常数与已有的实验值符合得很好.我们还提供了40~1000K温度范围内的三参数Arrhenius表达式.这些公式有利于今后在较宽的温度范围内迄今没有实验数据的反应的研究.  相似文献   

11.
刘艳  任宏江  刘亚强  王渭娜 《化学学报》2009,67(22):2541-2548
采用量子化学QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)方法研究了H2FCS单分子分解反应的微观动力学性质, 构建了反应势能剖面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明, H2FCS可经过不同的反应通道生成10种小分子产物, 脱H反应和HF消去反应为标题反应的主反应通道, 其中HF消去反应产物HCS可由两条反应通道生成. 在200~3000 K温度区间内得到三条反应通道的表观反应速率常数三参数表达式分别为 , 和 . 速率常数计算结果显示, 量子力学隧道效应在低温区间对反应速率常数的影响显著, 而变分效应在计算温度范围内可以忽略.  相似文献   

12.
运用量子化学密度泛函理论UB3LYP/6-311+G*和高级电子相关校正的偶合簇(CCSD(T)/6-311+G*)方法,对CH3CH2,CH3CHCl和CH3CCl2自由基与NO2反应的机理和动力学进行了理论研究,得到了体系的势能面信息和可能的反应机理.根据计算得到的各反应热力学参数及反应能垒,采用传统过渡态理论计算了各反应在温度T=298 K和T=700 K时的速率常数.研究结果表明,该类反应均通过1个中间体和1个过渡态生成产物,产物分别为CH3CHO+HNO,CH3CHO+ClNO和CH3CClO+ClNO.  相似文献   

13.
采用量子化学的QCISD(T)/6-311 G(d,p)//BHandHLYP/6-311G(d,p)方法研究了氟代甲烷CH4-nFn(n=1~3)与CH3自由基氢抽提反应的微观动力学性质.并利用Polyrate程序分别计算了3个反应在200~3000K范围内的速率常数.计算结果表明,R1a,R2a和R3三个反应路径的反应能量分别为-12.7,-9.5和11.8kJ/mol,相应的能垒依次为67.0,62.2和67.5kJ/mol.在437K时,kCVT/SCT分别为6.72×10-19,8.01×10-18和8.82×10-20cm3/(molecule.s).计算结果还表明,在低温段反应的量子隧道效应显著,在计算温度范围内变分效应对反应速率常数的影响可以忽略.  相似文献   

14.
采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了Criegee中间体CH_3CHOO与OH自由基反应的微观机理.结果表明,上述反应存在抽氢、加成-分解和氧化3类反应通道,其中,syn-CH3CHOO+OH以抽β-H为优势通道,表观活化能为-4.88 k J/mol;anti-CH_3CHOO+OH则以加成-分解反应为优势通道,表观活化能为-13.25 k J/mol.在加成-分解和氧化反应通道中,anti-构象的能垒均低于syn-构象,而抽氢反应则是syn-(β-H)的能垒低于anti-构象.速率常数计算表明,anti-构象的加成-分解反应通道具有显著的负温度效应;syn-和anti-构象的氧化通道具有显著的正温度效应.3类反应具有显著不同的温度效应,说明通过改变温度可显著调节3类反应的相对速率.  相似文献   

15.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

16.
CH3S自由基H迁移异构化及脱H2反应的直接动力学研究   总被引:5,自引:0,他引:5  
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560,F0005
采用密度泛函方法(MPW1PW91)在6.311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH(R1),脱H2反应CH3S→HCS+H2(R2)以及脱H2产物HCS异构化反应HCS→CSH(R3)的微观动力学机理.在QCISD(t)/6.311++G(d,p)//MPW1PW91/6.311G(d,p)+ZPE水平上进行了单点能校正.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200-2000K温度区间内的速率常数K^TST和k^CVT,同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数萨k^CVT/SCT.结果表明,反应R1,R2和R3的势垒△E^≠分别为160.69,266.61和241.63kJ/mol。R1为反应的主通道.低温下CH3S比CH2SH稳定,高温时CH2SH比CH3S更稳定.另外,速率常数计算结果显示,量子力学隧道效应在低温段对速率常数的计算有显著影响,而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

17.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

18.
CH3S与NO基态反应的机理及动力学   总被引:1,自引:0,他引:1  
在G3(MP2)水平上,通过对CH3S与NO反应势能面(PES)上关键驻点的能量计算,共找到3种中间体、7个过渡态、9种产物通道,并对其反应机理进行了讨论.结果表明此反应主要以两种方式进行一是加成反应,先生成CH3SNO,然后发生单分子解离和异构化反应;二是直接抽提反应,生成CH2S+HNO.用多通道RRKM-TST模型计算了反应随温度和压力变化的速率常数.以295 K的N2作浴气,在200.0~39996.6 Pa压力范围的速率常数为1.6×10-12~1.28×10-11 cm3·molecule-1·s-1.我们计算的速率常数与Balla等的实验值符合较好.反应的速率常数有明显的负温度效应和较强的压力依赖关系.预测常压低温下反应以生成CH3SNO为主,在常压高温1000 K以上以生成CH2S+HNO为主.  相似文献   

19.
采用CCSD(T)/aug-cc-p VTZ//B3LYP/6-311+G(2df,2p)方法对Criegee中间体RCHOO(R=H,CH_3)与NCO反应的机理进行了研究,利用经典过渡态理论(TST)并结合Eckart校正模型计算了标题反应在298~500 K范围内优势通道的速率常数.结果表明,上述反应包含亲核加成、氧化和抽氢3类机理,其中每类又包括NCO中N和O分别进攻的两种形式.亲核加成反应中O端进攻为优势通道,氧化和抽氢反应则是N端进攻为优势通道;甲基取代使CH_3CHOO反应活性高于CH2OO;anti-CH_3CHOO的加成及氧化反应活性高于syn-CH_3CHOO,而抽氢反应则是syn-CH_3CHOO的活性高于anti-CH_3CHOO.anti-构象对总速率常数的贡献大于syn-构象,且总速率常数具有显著的负温度效应.  相似文献   

20.
在G3(MP2)//B3LYP/6-311 G(d,p)水平上,对CH3S自由基与CO气相反应的微观机理进行了理论研究.结果表明:该反应共存在3个反应通道,产物分别为CH3 OCS,CH2S HCO和CH2S HOC.由于形成产物CH3 OCS的活化势垒较低,因此为主要反应通道,这与实验观察到的结果是一致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号