首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
矩形非球面圆弧半径误差分离及补偿技术   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了砂轮圆弧半径误差对大口径矩形轴对称非球面加工的影响。采用直线光栅式平行磨削的加工方式,建立了砂轮圆弧半径的误差分离的数学模型,分析影响面形精度的因素,根据加工及测量方式将砂轮圆弧半径误差分离出来,利用分离的砂轮圆弧半径误差更新砂轮圆弧半径,同时采用分离后的误差数据进行补偿加工。实验结果表明:对比不分离的补偿加工结果,粗磨和精磨条件下的分离误差补偿加工后的面形误差分别减小了14%和35%,该误差模型能够有效地分离出砂轮圆弧半径误差,分离误差效果明显,提高了加工的精度。  相似文献   

2.
<正> 这里所谈的误差是指球面铣磨中出现的深菊花纹、边厚差和偏心。深菊花纹是由于筒形铣磨砂轮的径向跳动和轴向跳动引起的,这两种跳动主要是砂轮制造误差造成的。铣磨机轴自身跳动一般都很小,影响不大。这两种跳动除造成深菊花纹外,还造成不规则的非球面。实测表明砂轮轮缘处的径向跳动有时达0.5mm以上,轴向跳动达0.2mm,对玻璃的破坏层深度可达0.2mm以上,  相似文献   

3.
为了保证用轨迹成型法加工光学零件的面形精度,对精密磨削机床影响工件面形误差的因素进行了理论分析。推导出机床调整机构可消除误差的公式。并以误差公式计算出的误差值来调整机床的微调机构,可达到减少面形误差,进而保证面形精度的目的。  相似文献   

4.
减小薄板玻璃工件研磨变形的研究   总被引:1,自引:0,他引:1  
针对薄板玻璃刚度差,在研磨中易产生变形这一特点,探讨了减小其变形的不同方法。我们用传统的上盘法粘结固定工件进行加工,工件在下盘前面形精度较好,能满足要求(在25mm×25mm面积上的平面度为0.05μm),但在下盘后产生的变形使其面形精度下降,在25mm×25mm面积上的平面度为0.2μm,已不能满足要求。采用真空吸附法国固定工件,消除了工件在粘结过程中由于温度变化产生的变形,而且在研磨过程中又设法减小对工件施加的压力,从而减小了工件在研磨过程中产生的变形,使加工后的工件面形与加工过程中的面形接近,这就保证了工件的面形精度。  相似文献   

5.
某台C620-1车床在加工轴类零件时产生锥度较大,以致不能加工精度稍高的轴类工件。机修工和操作者查找原因,在静态下测试:机床导轨精度合格,主轴线对导轨的平行度也合格,用检验心棒检测主轴径向跳动、轴向窜动不超差的情况下,就此问题提出分析和论证。  相似文献   

6.
不同步数相移算法下被测件径向相移不均匀引入的误差不同,对测量的影响也将不同。基于点衍射干涉测量光路,构建了误差分析模型,以5、6、7和13步相移算法为例,对不同相移算法下被测件径向相移不均匀引入的移相误差进行了分析,并将该移相误差的影响引入到实际干涉测量模型中,进一步分析比较了该误差对最终面形检测结果的影响,进而提出了一种基于误差预估计的多项式误差校正新方法。研究结果表明,相移算法步数越多,被测件径向相移不均匀引入的面形检测误差越大,误差均呈类抛物面分布;最终面形检测结果经Zernike多项式拟合消离焦项后已等同于进行了二次多项式校正,对于数值孔径为0.3以下的被测件,经二次多项式校正后该误差对测量的影响基本可以忽略。  相似文献   

7.
为了同时对长焦透镜的面形和焦距进行高精度检测,提出在Zygo干涉仪的球面光路中加入一个二元衍射元件作为检测件的计算全息法。 首先对计算全息法检测长焦透镜的面形和焦距进行了理论推导,并给出焦距误差公式。在Zemax中使用在平面基底上制作的二元衍射元件对一个长焦透镜的面形和焦距进行了模拟检测,其中对该长焦透镜面形的干涉检测PV值为0.0034λ,对焦距的检测精度为-0.11%。最后详细分析了两类误差对检测结果的影响,其中光学元件的位置误差影响不超过0.1λ;二元衍射元件的制造误差影响约0.01λ,在具体制造过程中,其径向位置误差和台阶误差可分别在2 μm和5 nm之内。在综合考虑各项误差的情况下,该方法的检测精度仍然可控制在2λ/25之内。  相似文献   

8.
提出了一种使用三坐标测量机(CMM)测量底面为圆形、矩形、跑道形离轴非球面面形误差的方法。针对离轴非球面的外形特征设计工件坐标系,规划工件坐标系定位点;利用CMM对离轴非球面进行点触发式自动测量,得到被测面点云坐标数据;建立离轴非球面数据处理模型,得出了面形误差。模拟分析表明,该测试方法和误差处理模型是正确的,并用该检测技术完成了离轴非球面粗抛光阶段的加工。  相似文献   

9.
偏折术中的几何结构标定误差是制约低阶面形测量精度的主要因素。从数学模型、理论模拟和实验三个方面分析了几何结构标定误差与低阶面形测量误差之间的关系。给出了表示几何结构标定误差与面形测量误差之间关系的数学模型,并通过模拟和实验对其进行了验证。结果表明,几何结构标定中坐标平移误差会导致倾斜和离焦面形测量误差;被测面分别与相机和显示器之间的距离越大,几何结构标定的误差对低阶面形测量的影响越小。研究结果可以帮助设计合适的偏折术测量系统结构和提高低阶面形测量精度。  相似文献   

10.
偏折术中的几何结构标定误差是制约低阶面形测量精度的主要因素。分析几何结构标定中校直误差与平面镜低阶面形测量误差之间的关系,给出描述校直误差与面形测量误差之间关系的灵敏度方程和权重因子,并通过模拟和实验结果对其进行验证。结果表明,校直误差会在面形测量结果中引入倾斜、离焦、像散和彗差等像差项,且面形测量误差与校直误差成正比。本研究有助于选择合适的偏折术系统结构,以提高低阶面形测量精度,同时可为偏折术测量中面形误差的评估和分析提供理论指导。  相似文献   

11.
目标表面发射率对红外热像仪测温精度的影响   总被引:2,自引:0,他引:2  
介绍了红外热像仪测温原理,分析了影响红外热像仪测温精度的因素,计算了不同表面发射率下红外热像仪的测温误差曲线。理论分析表明,目标表面发射率越高,红外热像仪测温精度越高。实验改变表面发射率的设置,计算了不同表面发射率对应的总辐射亮度,得到TP8型长波红外热像仪能够精确测温时,目标表面发射率必须大于0.5的结果。最后,对表面发射率分别为0.96、0.93和0.3的3种材料进行实际测温,结果表明,材料表面发射率较高时,红外热像仪具有较好的测温精度。  相似文献   

12.
介绍了红外热像仪测温原理,分析了影响红外热像仪测温精度的因素,计算了不同表面发射率下红外热像仪的测温误差曲线。理论分析表明,目标表面发射率越高,红外热像仪测温精度越高。实验改变表面发射率的设置,计算了不同表面发射率对应的总辐射亮度,得到TP8型长波红外热像仪能够精确测温时,目标表面发射率必须大于0.5的结果。最后,对表面发射率分别为0.96、0.93和0.3的3种材料进行实际测温,结果表明,材料表面发射率较高时,红外热像仪具有较好的测温精度。  相似文献   

13.
三角测量法是一种位移测量方法, 其测量精度不但受到传感器本身因素如光源、探测器、机械结构特性等因素的影响, 还受到被测表面特性如色泽、材料、粗糙度、倾斜度以及外界环境的影响。国内外的一些学者提出了许多提高传感器测量精度的方法, 但这些研究都是针对某一特性表面进行的, 没有涉及到对不同表面的测量时存在的问题。利用随机行走理论对物体表面的散射场进行了分析, 给出了不同粗糙度表面下弱散射光强与散射角及入射角的关系。由于设计制造的传感器量程范围内接收散射光的角度在15°至25°内变化, 因此取20°作为散射角角度, 理论计算模拟的三种不同粗糙面散射光强变化最大能达到300%左右。该结果对于优化激光三角传感器的设计和提高测量精度有一定的意义。  相似文献   

14.
Φ520mmF/1.6椭球面反射镜加工   总被引:1,自引:0,他引:1  
介绍了一块Φ520mm大相对孔径(F/1.6)轻量化椭球面反射镜的加工与检测方法。镜面的有效口径为Φ502mm,顶点曲率半径为1600mm,非球面系数k=-0.9663,面形精度要求优于0.025λ(RMS)。镜子背面有54个大小深浅不一的不通孔,用于减轻镜子的重量。采用WYKO干涉仪检测得到镜面面形误差达RMS0.02λ,λ=632.8nm。  相似文献   

15.
振动对面形测量误差的影响分析   总被引:2,自引:2,他引:0  
王汝冬  田伟  王平  王立朋 《光学学报》2012,32(11):1112001
振动会使高精度面形测量产生误差。建立了振动对干涉测量面形的误差模型,应用13步移相算法分析了在振幅为63 nm时的误差情况。分析结果表明,当面形测量误差的敏感频率为12 Hz时,振动引起的面形均方根(RMS)误差约为12 nm。通过实验进行了验证,仿真分析结果和实验结果基本相同。实验分析了在12 Hz时,振幅为5~63 nm时,对应的测量面形RMS误差为1~7.1 nm,振幅和RMS误差线性增大。为不同振动频率和振幅引起的面形RMS的误差分析和高精度面形测量的振动环境控制提供了一定的参考。  相似文献   

16.
实验研究了子孔径光学检测的拼接准确度.实验选取9个子孔径进行拼接,同时利用ZYGO干涉仪来测量子孔径和整个被检面的表面面形.实验发现,测量基准子孔径和整个被检面的时间间隔对子孔径拼接准确度的评价存在严重影响.为此,重点研究了产生影响的原因并提出了消除测量基准子孔径和整个被测面时间间隙影响的方法.最后,利用该方法研究了子孔径重叠面积对拼接准确度的影响.结果显示,当重叠面积比为7%时,PV和RMS的拼接误差分别为0.03λ(λ=632.8 nm) 和 0.01λ,并且重叠面积比和拼接准确度呈近似线性关系.  相似文献   

17.
邵延华  冯玉沛  张晓强  楚红雨 《强激光与粒子束》2022,34(11):112002-1-112002-6
精密光学元件表面疵病的人工检测分类方法效率低,且准确率易受疲劳等人工因素影响,而基于传统机器学习方法的分类准确率有待进一步提高。提出了一种基于深度学习卷积神经网络的光学大尺寸元件表面疵病识别方法。首先,通过现场实验采集并整理了大尺寸镜面疵病样本;接着,基于单通道灰度图像构建融合梯度的三通道图像,挖掘更深入的特征表达;最后,基于经典的LeNet网络,提出了面向激光惯性约束聚变(ICF)的光学元件表面疵病识别网络ICFNet,该网络不需要复杂的手工特征设计和提取,仅使用原始灰度图像就实现高效的疵病识别。实验结果表明:针对包含麻点、划痕和灰尘的三类疵病数据,ICFNet相较于使用多项特征和支持向量机的传统方法拥有较好的分类准确率。  相似文献   

18.
工具定位精度和工艺合理性规划是影响自由曲面表面高质量制造的主要因素。研究了立足计算机控制的确定性制造概念。借助于多自由度机构平台,采取点对点的材料去除方式,针对具有非平缓变化曲率或陡度的自由曲面表面,设计工具结构、规划抛光路径,实施快速均匀抛光,为构建自由曲面计算机控制制造专家系统提供了支撑。  相似文献   

19.
针对平面干涉检测技术的检测精度受限于参考面面形精度的问题,提出使用基于奇偶函数的高精度绝对检测方法消除干涉系统中参考面面形误差的影响。对旋转角度误差与旋转偏心误差对绝对检测方法测量精度的影响进行了仿真分析。利用商用菲索干涉仪,设计和分析了绝对检测精度实验及重复性实验。仿真结果显示:旋转角度误差在达到0.13°时,测量误差PV值为0.000 1λ;旋转偏心误差达到3 pixel时,测量误差PV值为0.005λ。实验结果显示:测得实际样品的绝对检测精度PV10值为0.041 5 λ,RMS值为0.008 7 λ,小于常规干涉检测所得结果;对同一平面两次独立的绝对检测结果进行点对点作差处理,从而获得残差图,其残差图PV10值为0.004 λRMS值为0.000 5 λ。实验结果表明了该方法的高重复性和有效性。  相似文献   

20.
This paper presents, in the context of materials dynamic behaviour study, a method for simultaneous measurement of the temperature and emissivity of a solid’s surface, by the use of infrared radiation. In contrast to existing methods, this method has no need for a pre-measurement of the surface emissivity. The emissivity and the temperature are measured simultaneously, by detecting the variations of emitted radiation and infrared radiation reflecting on the surface, at two different spectral zones. In this way, the accuracy of the measured temperature is greatly improved in cases were the surface optical properties vary during the measurement. Several experiments were carried out in order to complete the theoretical foundation of the method and to outline its accuracy and some of its limitations. There are various industrial applications of this method, for example the control of the temperature of the mechanical parts during work machining. One of them may be the measurement of the temperature of a sample during mechanical testing. An application of the method is proposed, that is easy to employ with non-sophisticated infrared and optical components. The results confirm the accuracy of the proposed method with an order of 3% of precision for temperature determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号