首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
G-四链体是富含鸟嘌呤碱基的DNA序列通过氢键相互作用形成的四链螺旋结构. 通过小分子化合物诱导与稳定端粒G-四链体从而抑制端粒酶活性是一种新的抗癌策略. 为了研究一系列吲哚并喹啉衍生物与端粒G-四链体的相互作用, 探究其相互作用模式, 从而为实现基于G-四链体结构的药物合理设计提供依据, 使用分子对接的方法构建了吲哚并喹啉衍生物与G-四链体复合物结构, 在此基础上进行分子动力学模拟, 并使用线性相互作用能(LIE)方法计算了化合物与G-四链体的结合自由能. 结果表明: 化合物与G-四链体的主要相互作用方式由氢键、静电与π-π堆积作用构成, 侧链末端基团类型和侧链的长短是影响相互作用强弱的重要因素. 通过LIE方法计算的结合自由能与实验结果基本吻合, 相关度达到r2=0.79. 并且, 基于预测的结合模式, 总结了拥有更高活性的新型吲哚并喹啉衍生物应具有的几个结构特征.  相似文献   

2.
富含鸟嘌呤碱基的DNA序列能够通过鸟嘌呤环的互联作用形成四链螺旋结构,这种结构被称为G-四链体。G-四链体由于能够抑制端粒酶的活性而成为抗肿瘤药物的新靶点,能促使G-四链体形成或稳定该结构的物质则可能对癌症有潜在的治疗意义。本文对以G-四链体为靶点的小分子端粒酶抑制剂的研究进行了综述。  相似文献   

3.
Na+-G-四链体复合物是一个明显的极化体系, 其形成或解离过程中, Na+的移动路线目前还不十分明确. σπ水平的原子-键电负性均衡方法融合进分子力学(ABEEMσπ/MM)模型除原子位点外, 还明确地定义了孤对电子、σ键和π键的位置, 并且各位点电荷随分子环境改变而浮动, 因此能更好地反映该体系的极化现象. 本文应用ABEEMσπ/MM方法研究了Na+-G-四平面复合物的性质, 包括它的几何构型、电荷分布和结合能等, 并在MP2/6-31G(d,p)水平上做了相应的从头算, 两种结果十分吻合. Na+的存在改变了G-tetrad的氢键方式. 通过比较Na+各条移动路线中体系的结合能, 预测G-四链体中三个Na+最有可能沿α方向依次移出. 以上研究为进一步应用ABEEMσπ/MM模型进行G-四链体中离子交换通道的动力学模拟打下坚实的基础.  相似文献   

4.
易卓云  王欣雨  张妍  苏敏  赵博  隋广超  史金铭 《化学通报》2021,84(12):1284-1291
G-四链体是一类由Hoogsteen氢键维持稳定的,富含鸟嘌呤的DNA或RNA二级结构。人类基因组中存在大量潜在的形成G-四链体的序列,所形成的G-四链体结构能够调控基因组的稳定性、DNA复制和基因表达,其中包括很多与癌症相关基因。因此寻找能够诱导DNA的G富集区域形成G-四链体结构的配体,进而筛选潜在抗癌药物的先导化合物,已成为癌症治疗研究的热点之一。本文对近年来发现和设计的以G-四链体为靶点的小分子配体,按照靶向的G-四链体结构类型和配体的分子结构进行分类,综述了这类化合物在癌症治疗方面的研究进展,分析了相关靶向治疗存在的问题,并对未来的研究方向进行了展望。  相似文献   

5.
研究了G-四链体中的连接环(Loop)、末端碱基和一价阳离子对其结构的影响,发现在K+溶液中Loop短的序列易形成平行结构,无末端碱基时容易形成多聚体,而反平行或混合平行/反平行的G-四链体则难以形成多聚体;一价阳离子K+,NH+4和Na+促进形成平行结构及多聚体的能力依次减弱.在平行G-四链体的3’或5’端增加非G碱基,或改变阳离子使其形成非平行结构,均可抑制多聚体的形成.Loop长度影响G-四链体的热稳定性,Loop短的序列可形成很稳定的分子内结构;无末端碱基的G-四链体多聚体的稳定性低于单个G-四链体,且多聚体随着温度升高而变小.结果表明,在K+溶液中,无末端碱基的平行G-四链体序列首先形成分子内结构,然后通过π-π堆积形成多聚体;末端碱基及反平行或混合平行/反平行G-四链体中的Loop可阻碍末端堆积作用,抑制多聚体的形成.本研究为G-四链体的结构与功能研究提供了有用信息.  相似文献   

6.
陈杰林  程明攀  王佳伟  仇得辉  David Monchaud  Jean-Louis Mergny  鞠熀先  周俊 《催化学报》2021,42(7):1102-1107,中插7-中插11
DNA酶中的G-四链体-血红素(G4-hemin)DNA酶结构具有较高的设计性和化学稳定性,因此格外受研究者关注.G-平面作为辅酶因子hemin的结合位点,不仅提供大π平面与hemin结合,而且其平面上的G碱基还可以充当近端配位基团与hemin进行配位.因此,研究G-平面完整性在G4-DNA酶体系中的作用具有重要意义.本文设计了一系列含有空位的G4(G-vacancy,GV)及G-三链体,通过“鸟嘌呤类似物插入”策略实现G-平面完整性以及DNA酶催化活性的恢复.结果表明,末端G-平面完整性是G4-DNA酶具有催化活性的必要条件,且其能够充当近端配位基团与末端碱基协同激活G4-DNA酶.考虑到hemin会选择性地结合于G4的3’-端平面,本文以含有3’-端空位的G4以及G-三链体为模型进行DNA酶的构建.结果表明,相较于末端完整的G4-hemin DNA酶,末端不完整的G4结构所形成的DNA酶催化活性很低.为了进一步验证该平面完整性的重要性,本文提出了“鸟嘌呤衍生物插入”策略,即将鸟嘌呤衍生物(无环鸟苷和鸟苷)插入G-空位以恢复G-平面的完整性.通过圆二色光谱和紫外熔解实验,发现末端平面完整性的缺失会使圆二色特征峰信号和G4结构热稳定性下降,而鸟嘌呤碱基类似物的加入则可以使特征峰信号以及热稳定性得到一定程度的恢复,表明鸟嘌呤碱基类似物的加入确实使G-平面完整性得到恢复.与此同时,随着鸟嘌呤碱基类似物浓度的增加,G4-hemin DNA酶活性逐渐增强,最终恢复至与完整G4一样的活性.在以G-三链体为模型的实验中,本文通过另一条富G序列与G-三链体进行结合,形成复合的(3+1)型G4结构,最终实现了DNA酶活性的恢复.同时,在3’-G-平面末端增加了激活碱基(dA或dTC),结果表明,即使G-平面不完整,末端碱基依旧能够激活DNA酶,但酶活性整体弱于完整G4时的活性.同样,“鸟嘌呤衍生物插入”策略可以使酶活性得到恢复.本文系列实验充分说明了末端碱基可与G-平面形成协同作用,与hemin的铁中心共同形成六配位关系,加速催化中间体生成,进而增强催化活性.有趣的是,通过设计Holliday junction结构研究发现,“鸟嘌呤衍生物插入”策略仅适用于平行G4结构.G-空位的存在不仅降低了G4结构的稳定性,而且降低了其与hemin间的亲和力,二者均是造成G4-DNA酶催化能力下降的主要因素.总之,本文证明了3’-端G-平面的完整性是G4-DNA酶实现其催化能力必不可少的因素,对理解末端G-平面在G4-DNA酶中的作用具有重要的参考意义.  相似文献   

7.
G-四链体是由具有连续鸟嘌呤(G)序列的DNA或RNA形成的一种特殊的核酸二级结构,由于有望形成G-四链体结构的序列广泛地分布于人类基因组的许多重要区域,有关G-四链体的研究已经成为国际上的一个研究热点。本文对G-四链体构型的多态性、G-四链体热稳定性的测试手段及G-四链体在K+定量检测方面的应用研究进行了简单的介绍和评述。  相似文献   

8.
利用电喷雾质谱(ESI-MS)研究了12种天然产物小分子与人类端粒G-四链体结构的非共价相互作用和识别功能, 比较了不同小分子与人类端粒G-四链体的结合强弱, 发现了一种新的识别小分子——防己诺林碱对人类端粒G-四链体有很好的结合. 通过质谱升温实验比较了小分子结合对G-四链体热稳定性的影响, 防己诺林碱的结合使G-四链体的离子的解离温度(T1/2)上升到200 ℃. 利用分子模拟对G-四链体DNA与小分子结合的模式以及稳定性进行了探讨, 给出了防己诺林碱可能的结合位点和结合模式, Autodock计算出来的结合能约为-31.5 kJ·mol-1. 同原来的平面型分子不同, 防己诺林碱是一类新型结构的分子, 为设计合成新型G-四链体识别分子提供了新的结构模型.  相似文献   

9.
段娜娜  王娜  杨薇  孔德明 《分析化学》2014,42(10):1414-1420
对鸟嘌呤碱基G重复序列之间连接环结构对G-四链体形成的影响进行了研究。发现在连接环较长,DNA链不易形成G-四链体的情况下,可以通过将环序列设计成双链结构的方式促进G-四链体的重新形成。这就为传感器的设计提供了一个新途径,即可以利用目标分子对环部双链的调节作用控制G-四链体DNA酶的活性。为证明这一点,在双链区域引入T-T碱基错配,破坏双链结构使DNA链不能形成G-四链体。Hg2+对T-T错配的稳定作用可以促进双链结构的形成,DNA链重新折叠成G-四链体,得到的G-四链体与氯化血红素(Hemin)结合后形成具有过氧化物酶活性的G-四链体DNA酶,据此构建了Hg2+传感器。利用此传感器可在10~700 nmol/L范围内实现Hg2+的定量检测,检出限为8.7 nmol/L。在此基础上,利用半胱氨酸可以将Hg2+从T-Hg2+-T碱基对上竞争下来的能力,设计了一种半胱氨酸的检测方法。此方法可以在20~600 nmol/L范围内实现半胱氨酸的定量检测,检出限为14 nmol/L。  相似文献   

10.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定条件下可以形成G-四链体DNA结构。小分子化合物诱导该结构的形成并使之稳定,可以抑制端粒酶活性而达到抗肿瘤的目的。因此,G-四链体DNA稳定剂的设计和筛选是近年来生物无机化学的重要前沿研究领域之一。在金属配合物中,钌配合物由于具有丰富的光化学、光物理特性以及生物活性,其作为G-四链体DNA稳定剂引起人们的高度关注。本文以近年一些代表性的研究工作为例,对钌配合物与G-四链体DNA相互作用方面的研究进展进行了综述。  相似文献   

11.
We describe a general multinuclear (1H, 23Na, 87Rb) NMR approach for direct detection of alkali metal ions bound to G-quadruplex DNA. This study is motivated by our recent discovery that alkali metal ions (Na+, K+, Rb+) tightly bound to G-quadruplex DNA are actually "NMR visible" in solution (Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337, 363). Here solution and solid-state NMR methods are developed for studying ion binding to the classic G-quadruplex structures formed by three DNA oligomers: d(TG4T), d(G4T3G4), and d(G4T4G4). The present study yields the following major findings. (1) Alkali metal ions tightly bound to G-quadruplex DNA can be directly observed by NMR in solution. (2) Competitive ion binding to the G-quadruplex channel site can be directly monitored by simultaneous NMR detection of the two competing ions. (3) Na+ ions are found to locate in the diagonal T4 loop region of the G-quadruplex formed by two strands of d(G4T4G4). This is the first time that direct NMR evidence has been found for alkali metal ion binding to the diagonal T4 loop in solution. We propose that the loop Na+ ion is located above the terminal G-quartet, coordinating to four guanine O6 atoms from the terminal G-quartet and one O2 atom from a loop thymine base and one water molecule. This Na+ ion coordination is supported by quantum chemical calculations on 23Na chemical shifts. Variable-temperature 23Na NMR results have revealed that the channel and loop Na+ ions in d(G4T4G4) exhibit very different ion mobilities. The loop Na+ ions have a residence lifetime of 220 micros at 15 degrees C, whereas the residence lifetime of Na+ ions residing inside the G-quadruplex channel is 2 orders of magnitude longer. (4) We have found direct 23Na NMR evidence that mixed K+ and Na+ ions occupy the d(G4T4G4) G-quadruplex channel when both Na+ and K+ ions are present in solution. (5) The high spectral resolution observed in this study is unprecedented in solution 23Na NMR studies of biological macromolecules. Our results strongly suggest that multinuclear NMR is a viable technique for studying ion binding to G-quadruplex DNA.  相似文献   

12.
We present the intramolecular G-quadruplex structure of human telomeric DNA in physiologically relevant K(+) solution. This G-quadruplex, whose (3 + 1) topology differs from folds reported previously in Na(+) solution and in a K(+)-containing crystal, involves the following: one anti.syn.syn.syn and two syn.anti.anti.anti G-tetrads; one double-chain reversal and two edgewise loops; three G-tracts oriented in one direction and the fourth in the opposite direction. The topological characteristics of this (3 + 1) G-quadruplex scaffold should provide a unique platform for structure-based anticancer drug design targeted to human telomeric DNA.  相似文献   

13.
Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecules) model and implicit solvent model.For complexes in which Cd2+ attached to the N(7) and O(6) sites of guanine,energy analysis together with the Natural Bonding Orbital(NBO) analysis were performed to elucidate the bonding characteristics in detail.The most stable structures are penta-coordinate complexes without aqua ligand located at the guanine site.Higher number of water ligands corresponds to higher stabilization energies.Average bonding energies of G-Cd increase with the number of water molecules.Bonding energies of water ligands depend on its position in the complexes.The charge distribution of guanine changed with increasing the number of water ligands,which may also influence the base-pairing pattern of guanine.There is positive charge transfer from guanine to aqua ligand as the number of the hydration waters increases.IEFPCM optimization has results comparable to the [CdG(H2O)5]2+ structure 5a.  相似文献   

14.
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.  相似文献   

15.
通过将参与形成四链结构G-quadruplex的G(鸟嘌呤)碱基分别替换为T(胸腺嘧啶),C(胞嘧啶)和A(腺嘌呤),用圆二色光谱系统地研究了不同位置的G对G-quadruplex结构稳定性的贡献.结果表明,(1)替换G-quadruplex结构中间层的G对其稳定性的影响最大;(2)该序列及其错配序列大多数情况下在钾离子溶液中比钠离子溶液中稳定;(3)某些特定位置的G被替换为C或A后序列的熔点与原始序列接近甚至高于原始序列.  相似文献   

16.
与羟基配位是金属离子的一种重要的存在形式. 我们得到了两种半乳糖醇氯化钆配合物, 其中一种为金属离子与配体为2:1的配合物,钆离子与半乳糖醇的三个羟基及六个水分子配位, 其它水分子以结晶水的形式存在, 氯离子不参加配位;另一种配合物根据红外, 元素分析, 差热热重, 远红外以及太赫兹光谱推测可能是钆离子与两个半乳糖醇分子的六个羟基以及三个水分子配位, 形成1:1配合物. 实验结果说明半乳糖醇与稀土离子之间可以形成多种配合物, 金属离子与糖的羟基存在着复杂的相互作用.  相似文献   

17.
The structure of the intermolecular DNA quadruplex d(TTAGGGT)4, based on the human telomeric DNA sequence d(TTAGGG), has been determined in solution by NMR and restrained molecular dynamics simultations. The core GGG region forms a highly stable quadruplex with G-tetrads likely stabilised by K+ ions bound between tetrad plains. However, we have focused on the conformation of the adenines which differ considerably in base alignment, stability and dynamics from those in previously reported structures of d(AGGGT)4 and d(TAGGGT)4. We show unambiguously that the adenines of d(TTAGGGT)4 are involved in the formation of a relatively stable A-tetrad with well-defined glycosidic torsion angles (anti), hydrogen bonding network (adenine 6-NH2-adenine N1) defined by interbase NOEs, and base stacking interactions with the neighbouring G-tetrad. All of these structural features are apparent from NOE data involving both exchangeable and non-exchangeable protons. Thus, context-dependent effects appear to play some role in dictating preferred conformation, stability and dynamics. The structure of d(TTAGGGT)4 provides us with a model system for exploiting in the design of novel telomerase inhibitors that bind to and stabilise G-quadruplex structures.  相似文献   

18.
The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplex can show peroxidase-like activity with an anionic porphyrin, iron (III) protoporphyrin IX (hemin). Importantly, hemin binds to G-quadruplexes with high selectivity over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is attributable to an electrostatic repulsion of phosphate groups in ssDNA and dsDNA. The G-quadruplex and hemin-G-quadruplex complex allow development of sensing techniques to detect DNA, metal ions and proteins. In addition to hemin, anionic phthalocyanines also bind to the G-quadruplex formed by human telomere DNA, specifically over ssDNA and dsDNA. Since the binding of anionic phthalocyanines to the G-quadruplex causes an inhibition of telomerase activity, which plays a role in the immortal growth of cancer cells, anionic phthalocyanines are promising as novel anticancer drug candidates. This review focuses on the specific binding of hemin and anionic phthalocyanines to G-quadruplexes and the applications in vitro and in vivo of this binding property.  相似文献   

19.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. Here, the effect of metal ions and water on the structure of glycine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water on structures of Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (m = 0, 2, 5) complexes have been determined theoretically by employing the hybrid B3LYP exchange-correlation functional and using extended basis sets. Selected calculations were carried out also by means of CBS-QB3 model chemistry. The interaction enthalpies, entropies, and Gibbs energies of eight complexes Gly.Mn+ (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) were determined at the B3LYP density functional level of theory. The computed Gibbs energies DeltaG degrees are negative and span a rather broad energy interval (from -90 to -1100 kJ mol(-1)), meaning that the ions studied form strong complexes. The largest interaction Gibbs energy (-1076 kJ mol(-1)) was computed for the NiGly2+ complex. Calculations of the molecular structure and relative stability of the Gly.Mn+(H2O)m and GlyZwitt.Mn+(H2O)m (Mn+ = Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+; m = 0, 2, and 5) systems indicate that in the complexes with monovalent metal cations the most stable species are the NO coordinated metal cations in non-zwitterionic glycine. Divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ prefer coordination via the OO bifurcated bonds of the zwitterionic glycine. Stepwise addition of two and five water molecules leads to considerable changes in the relative stability of the hydrated species. Addition of two water molecules at the metal ion in both Gly.Mn+ and GlyZwitt.Mn+ complexes reduces the relative stability of metallic complexes of glycine. For Mn+ = Li+ or Na+, the addition of five water molecules does not change the relative order of stability. In the Gly.K+ complex, the solvation shell of water molecules around K+ ion has, because of the larger size of the potassium cation, a different structure with a reduced number of hydrogen-bonded contacts. This results in a net preference (by 10.3 kJ mol(-1)) of the GlyZwitt.K+H2O5 system. Addition of five water molecules to the glycine complexes containing divalent cations Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+ results in a net preference for non-zwitterionic glycine species. The computed relative Gibbs energies are quite high (-10 to -38 kJ mol(-1)), and the NO coordination is preferred in the Gly.Mn+(H2O)5 (Mn+ = Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) complexes over the OO coordination.  相似文献   

20.
The alkylation reaction of 9-methyladenine and 9-methylguanine (as prototype substrates of deoxy-adenosine and -guanosine), by the parent o-quinone methide (o-QM), has been investigated in the gas phase and in aqueous solution, using density functional theory at the B3LYP/6-311+G(d,p) level. The effect of the medium on the reactivity, and on the stability of the resulting adducts, has been investigated by using the C-PCM solvation model to assess which adduct arises from the kinetically favorable path, or from an equilibrating process. The calculations indicate that the most nucleophilic site of the methyl-substituted nucleobases in the gas phase is the guanine oxygen atom (O(6)) (DeltaG()(gas) = 5.6 kcal mol(-)(1)), followed by the adenine N1 (DeltaG)(gas) = 10.3 kcal mol(-)(1)), while other centers exhibit a substantially lower nucleophilicity. The bulk effect of water as a solvent is the dramatic reduction of the nucleophilicity of both 9-methyladenine N1 (DeltaG)(solv) = 14.5 kcal mol(-)(1)) and 9-methylguanine O(6) (DeltaG)(solv) = 17.0 kcal mol(-)(1)). As a result there is a reversal of the nucleophilicity order of the purine bases. While O(6) and N7 nucleophilic centers of 9-methylguanine compete almost on the same footing, the reactivity gap between N1 and N7 of 9-methyladenine in solution is highly reduced. Regarding product stability, calculations predict that only two of the adducts of o-QM with 9-methyladenine, those at NH(2) and N1 positions, are lower in energy than reactants, both in the gas phase and in water. However, the adduct at N1 can easily dissociate in water. The adducts arising from the covalent modification of 9-methylguanine are largely more stable than reactants in the gas phase, but their stability is markedly reduced in water. In particular, the oxygen alkylation adduct becomes slightly unstable in water (DeltaG(solv) = +1.4 kcal mol(-)(1)), and the N7 alkylation product remains only moderately more stable than free reactants (DeltaG(solv) = -2.8 kcal mol(-)(1)). Our data show that site alkylations at the adenine N1 and the guanine O(6) and N7 in water are the result of kinetically controlled processes and that the selective modification of the exo-amino groups of guanine N2 and adenine N6 are generated by thermodynamic equilibrations. The ability of o-QM to form several metastable adducts with purine nucleobases (at guanine N7 and O(2), and adenine N1) in water suggests that the above adducts may act as o-QM carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号