首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SO2对NO催化氧化过程的影响V.NiO/γ-Al2O3上SO2的作用机理   总被引:1,自引:0,他引:1  
采用程序升温脱附(TPD)及漫反射原位红外光谱(DRIFT)技术分析比较了SO2存 在前后,NO—02反应气体在NiO/γ—Al2O3催化剂上所形成吸附物种的变化情况, 发现SO2能促使硝酸盐物种在低温分解并释放出NO2,而且耐热稳定的硝酸盐物种也 比单纯NO-02吸附时多.室温时催化剂表面上的SO2以弱吸附物种为主,特征红外吸 收峰位于1324cm^-1附近,温度升高后表面硫酸盐物种数量增多.关联SO2气氛中 NO2的生成规律后得出,类似于铅室反应中间体的多分子吸附物种[NO2(SO3)x]是产 生N02的活性物种,由SO2在载体或催化剂表面弱碱位吸附后吸引气相NO所产生,解 离O^-起到稳定活性物种和补充弱碱位的作用.同时该物种也是毒性物质SO4^2-的 前驱体,当KO氧化反应发生后催化剂的失活也开始了.  相似文献   

2.
SO2对NO催化氧化过程的影响V.NiO/γ-Al2O3上SO2的作用机理   总被引:7,自引:0,他引:7  
李平  卢冠忠 《化学学报》2003,61(5):660-665
采用程序升温脱附(TPD)及漫反射原位红外光谱(DRIFT)技术分析比较了SO2存 在前后,NO—02反应气体在NiO/γ—Al2O3催化剂上所形成吸附物种的变化情况, 发现SO2能促使硝酸盐物种在低温分解并释放出NO2,而且耐热稳定的硝酸盐物种也 比单纯NO-02吸附时多.室温时催化剂表面上的SO2以弱吸附物种为主,特征红外吸 收峰位于1324cm^-1附近,温度升高后表面硫酸盐物种数量增多.关联SO2气氛中 NO2的生成规律后得出,类似于铅室反应中间体的多分子吸附物种[NO2(SO3)x]是产 生N02的活性物种,由SO2在载体或催化剂表面弱碱位吸附后吸引气相NO所产生,解 离O^-起到稳定活性物种和补充弱碱位的作用.同时该物种也是毒性物质SO4^2-的 前驱体,当KO氧化反应发生后催化剂的失活也开始了.  相似文献   

3.
主要考察了NO2对Cu/SAPO-34分子筛催化剂在整个温度范围内(100-500°C)NH3选择性催化还原(SCR)NO性能的影响.研究所使用样品为新鲜Cu/SAPO-34催化剂在750°C下水热处理4 h的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化.活性评价实验结果表明,NO2会抑制催化剂的低温(100-280°C)活性,但其存在会提高催化剂的高温(280°C以上)活性.与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N2O)的浓度增大.动力学结果表明,Cu/SAPO-34催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ?mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ?mol-1)更大.In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Br?nsted酸性位上的NH3物种反应生成NH4NO3.低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

4.
用TPD研究SO2对NO催化氧化过程的影响   总被引:6,自引:0,他引:6  
 针对活性氧化铝载体及过渡金属氧化物催化剂上SO2增强NO吸附并促进其氧化的实验事实,考察了反应温度对SO2发挥促进作用的影响.结果发现,在50~250℃间存在一适宜的温度范围,能使氧化铝上原本不氧化的NO在SO2气氛中发生氧化.对氧化铝预吸附不同组成的气体及在不同温度下吸附NO-O2-SO2后进行了TPD研究.结果表明,SO2的存在对NO氧化吸附生成NO2高温脱附物种有利.对Co3O4/Al2O3催化剂上吸附SO2-NO2的TPD研究结果显示,SO2先吸附或与NO2共吸附都能使NO2高温物种脱附增强,同时SO2的弱吸附物种转变成强吸附物种或表面硫酸盐物种,意味着弱吸附的SO2能与NO2形成稳定的物种;而后吸附的SO2竞争占据NO2的吸附位.推测表面上弱吸附的SO2与NO-O2或NO2之间形成了多分子的活性物种.  相似文献   

5.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一. V2O5/TiO2催化剂被广泛应用于氨法选择性还原氮氧化物(NH3-SCR)反应,但该催化剂存在工作温度高(300–400oC)及 SO2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温 SCR催化剂具有重要意义.过渡金属氧化物(如 Fe2O3, MnOx和 CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在 SO2和 H2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注, Yang等首次将 V2O5/TiO2-PILC催化剂应用于 NH3-SCR反应,发现其催化活性高于传统 V2O5/TiO2催化剂.柱撑黏土基催化剂在 NH3-SCR反应中也显示出良好抗硫性能,但 V2O5/TiO2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列 V2O5/TiO2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.
  首先采用离子交换法制备出 TiO2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV2O5/TiO2-PILC催化剂.同时,制备了传统 V2O5/TiO2和 V2O5-MoO3/TiO2催化剂作为对比.活性评价结果显示,4V/TiO2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160oC时, NO转化率可达80%以上.同时,4V/TiO2-PILC催化剂还具有较宽的反应温度窗口,在260–500oC范围内, NO转化率保持在90%以上.向反应体系中加入0.05% SO2和10% H2O后,在低温(160oC以下)时所有催化剂的反应活性都有一定提高,可能是由于 SO2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO2和4V6Mo/TiO2催化剂活性均明显下降,而4V/TiO2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示, SO2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态 SO42–物种形式存在,而在4V/TiO2-PILC催化剂表面离子态 SO42–物种的量最少. X射线光电子能谱及 O2程序升温脱附结果显示,在4V/TiO2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在 SO2气氛下,离子态 SO42–物种在 SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态 SO42–物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

6.
氮氧化物(NO_x)是当今大气环境中的主要污染物之一,氨法选择性催化脱硝技术(NH_3-SCR)是最有前景的烟气脱硝技术之一.在众多的NH_3-SCR催化剂中,钛基催化剂由于其较好的热稳定性、抗硫性和环境友好性成为近年来研究的热点.本文以SO_4~(2-).离子作为晶面导向剂,采用一步水热法合成了具有(001)高能晶面的SO_4~(2-).-TiO_2,负载氧化铈后用于SCR反应,并以Ce/P25和Ce/P25-S(浸渍法硫酸化)作为参照对比.研究发现,Ce/TiO_2-001更适合于中、高温NH_3-SCR反应,在290 oC时NO转化率已达99%,并且在290–480 oC范围内均保持99%的脱硝效率.利用X射线衍射、N2吸附脱附、透射电子显微镜、X射线光电子能谱(XPS)、NH3/O2程序升温脱附(TPD)、傅里叶原位红外光谱等技术研究了上述催化剂的表面物化性质与脱硝性能的关系.相比于Ce/P25和Ce/P25-S,Ce/TiO_2-001具有更高的比表面积(107 m~2/g),形成了介孔TiO_2单晶,且晶粒尺寸更小.XPS和NH3-TPD结果表明,Ce/TiO_2-001表面具有丰富的酸性位.硫酸化可以增加催化剂表面的Brosted/Lewis酸性位;同时,(001)高能晶面有利于水分子的解离,从而促进酸性位的产生.O_2-TPD表明,Ce/TiO_2-001催化剂表面存在大量化学吸附氧,这与其一步合成中的硫酸化和(001)高能晶面密切相关,而化学吸附氧在中高温SCR反应中起着重要的作用.通过原位红外分析可得,不同催化剂表面所形成的NO_x吸附物种有所差异,在30°C时,Ce/P25的NO_x吸附物种比较丰富,存在气相NO2、双齿硝酸盐、线性硝酸盐、单齿硝酸盐和桥式硝酸盐,而Ce/P25-S和Ce/TiO_2-001上的NO_x吸附物种则以单齿硝酸盐/亚硝酸盐为主.随着温度的升高,以上催化剂表面的NO_x吸附物种逐渐变为以气相NO2和双齿硝酸盐为主.但同种NO_x吸附物种(气相NO2、双齿硝酸盐)在不同催化剂上的反应活性也有所不同,在250°C时,其顺序为:Ce/TiO_2-001Ce/P25-SCe/P25,与脱硝性能相符.由此可推测,催化剂表面硫酸化和(001)高能晶面的存在有利于提高NO_x中间产物的反应活性,增加反应速率,从而提高脱硝性能.综上所述,硫酸化、高比表面积和(001)高能晶面是Ce/TiO_2-001具有很好脱硝活性的重要原因.硫酸化可以提供丰富的酸性位,增强氨的吸附性能;高比表面积不仅可以负载更多的活性组分,而且有利于活性组分的均匀分散,对降低活性中心的尺寸、防止活性组分烧结团聚有积极作用.而(001)高能晶面则可以促进中、强酸和化学吸附氧的形成,活化NO_x吸附物种,从而提高SCR催化活性  相似文献   

7.
主要通过XPS表征、热力学计算以及一系列设计的评价实验等方法,对硫化CoMo/Al2O3催化剂上H2同时催化还原SO2和NO反应的活性相、吸附活性位以及反应机理进行了研究.结果表明,金属硫化物相是SO,和NO转化的主要活性相,并与载体Al2O3共同承担H2S转化为单质硫的作用.此外,反应过程中产生的品格空位也对NO转化起着重要作用.催化剂表面的阴离子空位是SO2和NO共同的吸附活性位,SO2对NO的吸附有抑制作用,而催化剂表面的L碱佗也是SO2的吸附活性位,NO可促进SO2的氧化吸附.最后,本文从反应分子的吸附与活化、NO的转化及品格硫的流失、SO2还原到H2S、H2S的转化、晶格硫的补充等5个方面提出了反应机理.  相似文献   

8.
NOx是大气污染物的重要组成部分,能够造成酸雨、光化学烟雾和臭氧层破坏等一系列环境问题,严重危害人类健康.选择性催化还原(SCR)是控制NOx排放的主要技术,当前工业上普遍采用的是钒钛催化剂,然而该催化剂活性温度窗口较窄(300-400oC),N2选择性较低,而且钒物种本身有毒.因此开发新型SCR催化剂成为研究热点.Fe/TiO2催化剂具有稳定的化学性质,环境污染少且价格低廉,近年来受到广泛关注.为了提高Fe/TiO2催化活性,人们采用了各种不同的制备方法.本文以F127作为结构导向剂,结合溶胶-凝胶法原位合成了具有介孔结构、工作温度在150-300 oC的Fe/TiO2脱硝催化剂,并与普通浸渍法和共沉淀法制备的催化剂进行了对比.利用N2吸附脱附、紫外-可见光谱、X射线电子能谱、NH3程序升温脱附和原位红外光谱等技术研究了制备方法对Fe/TiO2催化剂物理结构及脱硝性能的影响.结果表明,相较于浸渍法和共沉淀法,模板法制备的催化剂具有较高的脱硝效率和抗H2O和SO2性能.作为结构导向剂,F127能够诱导催化剂形成均匀的介孔结构,有利于提高催化剂比表面积,促进反应物分子的扩散和转移,从而提高催化剂脱硝效率.进一步研究发现,模板法能够明显促进活性组分Fe物种的分散和NH3吸附,载体与活性组分具有较强的相互作用,因而有利于催化剂产生较多的活性位.结合XPS结果,较多的活性位点有利于表面吸附氧(Oα)在催化剂表面的吸附.Oα有利于NO到NO2的转化,从而促进快速SCR反应:NO+NO2+2NH3→2N2+3H2O.通过原位红外机理分析证明,吸附在模板法制备的催化剂表面的NO物种具有较强的稳定性,当温度超过200 oC时,仍然保持一定的吸附强度;吸附NH3红外结果表明,Lewis酸性位比Br?nsted酸性位具有更强的稳定性,当温度超过150oC仍然具有较强的Lewis酸吸附.催化剂表面稳定的NO物种和Lewis酸位上强的NH3吸附是催化剂催化活性增加的重要原因.  相似文献   

9.
主要通过XPS表征、热力学计算以及一系列设计的评价实验等方法,对硫化CoMo/Al2O3催化剂上H2同时催化还原SO2和NO反应的活性相、吸附活性位以及反应机理进行了研究。结果表明,金属硫化物相是SO2和NO转化的主要活性相,并与载体Al2O3共同承担H2S转化为单质硫的作用。此外,反应过程中产生的晶格空位也对NO转化起着重要作用。催化剂表面的阴离子空位是SO2和NO共同的吸附活性位,SO2对NO的吸附有抑制作用,而催化剂表面的L碱位也是SO2的吸附活性位,NO可促进SO2的氧化吸附。最后,本文从反应分子的吸附与活化、NO的转化及晶格硫的流失、SO2还原到H2S、H2S的转化、晶格硫的补充等5个方面提出了反应机理。  相似文献   

10.
吴强  高洪伟  贺泓 《催化学报》2006,27(5):403-408
 以Ag/Al2O3为催化剂,采用原位漫反射傅里叶变换红外光谱法研究了SO2对C3H6选择性还原NOx反应的影响. 结果表明, SO2在催化剂表面转化为硫酸盐,并且随着硫酸盐累积量的增加,其主要红外特征吸收峰由低波数向高波数漂移. 高浓度表面硫酸盐的存在不仅抑制了催化剂表面硝酸盐的生成,而且抑制了硝酸盐与表面烯醇式物种(RCH=CH-O-)或乙酸盐物种进一步反应,生成活泼的反应中间体异氰酸酯(-NCO), 这是导致Ag/Al2O3催化剂上C3H6选择性还原NOx活性降低的主要原因.  相似文献   

11.
用浸渍法制备了CoMo/Al2O3催化剂,并对其进行了XRD、低温氮吸附-脱附和TPR表征.结果表明,随着Co负载量的增加,催化剂表面活性物种增加,但同时催化剂的比表面积和孔容逐渐减小;硫化后的催化剂比未经硫化处理的催化剂表面具有更多更易还原的活性物种.将所制得的催化剂硫化后用于NO分解和H2还原NO反应,NO均完全转化,但催化剂最终会因为晶格硫的大量流失而活性下降.在H2还原NO反应体系中,H2的存在使得催化剂晶格硫的流失速率极大变缓,催化剂活性下降较慢;在H2同时还原SO2和NO体系中,由于晶格硫能够得到外界源源不断的补充,因此,SO2和NO能同时在催化剂表面实现稳定的还原,反应温度、空速、进料气中H2的配比、催化剂中Co负载量以及硫化预处理方式对催化剂的活性有显著影响.活性测试结果表明,在500℃,空速12000 h-1,n(H2)/n(SO2 NO)=2时,5%Co10%Mo/Al2O3上SO2和NO转化率均为100%,单质硫产率达96.6%.  相似文献   

12.
负载稀土元素 Tm以改性 SO2 - 4 / Ti O2 ,制备出固体超强酸催化剂 Tm- SO2 - 4 / Ti O2 ,并用于催化柠檬酸与正丁醇的酯化反应 .考察了 Tm的负载对催化剂性能的影响 ,并借助吡啶吸附的程序升温脱附 (Py- TPD)法、差热分析 (DTA)、热重分析 (TGA)、红外光谱 (IR)法研究其结构与性能的关系 .实验结果表明 ,Tm的负载 ,使催化剂的催化活性有所提高 ,Tm的加量为催化剂量的 3%时制得的 Tm- SO2 - 4 / Ti O2 ,其催化酯化反应的转化率为94.4% ;Tm的负载能显著降低催化剂表面的积炭量 ,并且有效抑制 SO2 - 4 的流失 ,使 Tm- SO2 - 4 / Ti O2 催化剂具有良好的稳定性 ,重复使用 5次后反应的转化率仍高达 93.1%  相似文献   

13.
富氧条件下Cu/Al2O3催化剂上C3H6选择性还原NO的研究   总被引:9,自引:0,他引:9  
以Cu/Al2O3为催化剂,对富氧条件下C3H6为还原剂选择性催化还原NO反应进行了研究.活性评价结果表明,与高活性的Ag/Al2O3催化剂相比,Cu/Al2O3催化剂选择性还原NO的活性较低,NO的最高转化率仅为40%.在所考察的温度范围(473~723K)内,红外谱图中不存在有机含氮化合物(R—ONO和R—NO2)的特征振动吸收峰.作为反应中间体—NCO的前驱体,有机含氮化合物在Cu/Al2O3催化剂表面难以生成是造成催化剂选择性还原NO活性低的直接原因.在Cu/Al2O3催化剂上,NO2吸附能够优先发生,并以NO3-物种的形式覆盖在大部分催化剂表面.动态原位红外光谱实验发现,这种NO3-表面物种与C3H6的反应性较差,使生成有机含氮化合物的关键反应难以发生,但此时的催化剂表面有利于C3H6和O2的完全氧化反应,这是导致Cu/Al2O3催化剂选择性较低的根本原因.  相似文献   

14.
 采用程序升温脱附、在线质谱和原位漫反射红外光谱等手段, 比较了 NO 和 NO2 在 V2O5 及 V2O5/AC 催化剂表面的选择催化还原 (SCR) 反应行为. 结果表明, 氨以质子态 NH4+和共价态 NH3 分子两种形态吸附于纯 V2O5 表面, V=O 为氨的主要吸附活性位. 无氧状态下, NO 和 NO2 皆可与吸附于 V2O5 表面的 NH3 反应, 并且 NO2 与吸附态 NH3 的反应活性高于 NO. 但在 V2O5/AC 催化剂表面, 同样在无氧条件下, NO 几乎不与吸附态 NH3 反应, 而 NO2 却可以反应并生成 N2. 在 V2O5/AC 表面, NO 很容易被气相 O2 氧化为 NO2, 然后参与 SCR 反应. 可见, NO2 是 NO 在 V2O5/AC 表面发生 SCR 反应的中间体.  相似文献   

15.
刘赵穹  马骏  杨锡尧 《催化学报》2004,25(8):624-632
 采用显微红外光谱、漫反射红外光谱、瞬变应答反应以及催化剂活性测试等实验手段,对SnO2-TiO2催化剂上SO2+CO,NO+CO和SO2+NO+CO (SRSN)反应的机理及活性位进行了综合研究. 结果表明, SO2+CO和NO+CO反应按典型的Redox机理进行,催化剂的表面晶格氧[O]和氧阴离子空穴[□]([O]-[□])是Redox反应的活性位. 对于SO2+CO反应,其[O]-[□]位于SnO2-TiO2催化剂中邻近Sn离子和邻近Ti离子的位置,邻近Ti离子的[O]-[□]的活性比邻近Sn离子的[O]-[□]的活性高. NO+CO反应主要在邻近Sn离子的[O]-[□]中心上进行. 对于SRSN反应,其中的SO2+CO反应的机理及催化剂的活性位与单纯的SO2+CO反应相同,而其中的NO+CO反应按两种机理进行: 一种和单纯的NO+CO反应相同,即按一般的Redox机理进行,其活性位为邻近Sn离子的[O]-[□]中心; 另一种按SO2促Redox反应机理进行,其活性位为表面活性硫物种[SO]*.  相似文献   

16.
采用溶胶-凝胶法制备了TiO2以及La2O3-TiO2载体, 再用沉积沉淀法制备Au/TiO2和Au/La2O3-TiO2催化剂, 并对催化剂的CO氧化反应活性进行测试. 结果表明, La2O3助剂可以显著提高催化剂催化氧化CO的活性. X射线衍射(XRD)、程序升温脱附(TPD)、N2吸附-脱附(BET)表征结果表明, La2O3助剂不仅提高了催化剂比表面积, 抑制了TiO2晶粒尺寸的长大, 并且增强了TiO2的晶格应变, 在O2气氛吸附过程中主要在TiO2表面形成O-物种. 原位傅立叶变换红外(FT-IR)结果进一步表明, La的掺杂不仅提高了吸附在Au活性位CO的氧化速率, 还使TiO2表面形成第二种活性位, 从而显著提高了催化活性.  相似文献   

17.
考察了In/SO42-/TiO2(In/STi)催化剂上甲烷选择性催化还原(CH4-SCR)NOx的活性,分析了硫酸化对催化活性的促进作用.结果表明,硫酸化影响了In在催化剂表面的存在形态和CH4的活化产物,从而提高了催化剂活性.吡啶红外光谱分析表明,硫酸化后的STi载体可提供足够强度的B酸位,有利于活性中心InO+物种的形成.原位红外光谱分析表明,In/TiO2催化剂上CH4的活化产物为完全氧化的CO2和H2O,而硫酸化后的In/STi催化剂上CH4的活化产物为HCOO-,该物种被认为是CH4-SCR反应的重要中间体,它的生成为In/STi催化剂上CH4-SCR反应的速控步骤.  相似文献   

18.
采用吸附和程序升温脱附(TPD)技术研究了介质阻挡放电等离子体对CuZSM-5催化剂上吸附的氮氧化物作用. 实验表明, 介质阻挡放电等离子体使催化剂表面吸附的NO及Cu活性位上吸附的NOx物种脱附, 并引发表面化学反应生成新的氮氧化物. 对于NO/N2体系, 介质阻挡放电等离子体与吸附在CuZSM-5上NO作用, 主要生成N2O和O2. 在富氧体系NO/O2/N2, 则生成较大量的N2O、NO2和NO. 等离子体预处理活性下降的CuZSM-5, 可明显提高其催化分解NO活性. 对比有或无介质阻挡放电等离子体预处理NO或NO/O2饱和吸附的CuZSM-5上的NO-TPD结果表明, 等离子体提高催化剂活性的原因与其使催化剂Cu活性位上吸附的NOx物种脱附有关.  相似文献   

19.
采用吸附和程序升温脱附(TPD)技术研究了介质阻挡放电等离子体对CuZSM-5催化剂上吸附的氮氧化物作用.实验表明,介质阻挡放电等离子体使催化剂表面吸附的NO及Cu活性位上吸附的NOx物种脱附,并引发表面化学反应生成新的氮氧化物.对于NO/N2体系,介质阻挡放电等离子体与吸附在CuZSM-5上NO作用,主要生成N2O和O2.在富氧体系NO/O2/N2,则生成较大量的N2O、NO2和NO.等离子体预处理活性下降的CuZSM-5,可明显提高其催化分解NO活性.对比有或无介质阻挡放电等离子体预处理NO或NO/O2饱和吸附的CuZSM-5上的NO-TPD结果表明,等离子体提高催化剂活性的原因与其使催化剂Cu活性位上吸附的NOx物种脱附有关.  相似文献   

20.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号