首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional integer‐order partial differential equation based image denoising approach can easily lead edge and complex texture detail blur, thus its denoising effect for texture image is always not well. To solve the problem, we propose to implement a fractional partial differential equation (FPDE) based denoising model for texture image by applying a novel mathematical method—fractional calculus to image processing from the view of system evolution. Previous studies show that fractional calculus has some unique properties that it can nonlinearly enhance complex texture detail in digital image processing, which is obvious different with integer‐order differential calculus. The goal of the modeling is to overcome the problems of the existed denoising approaches by utilizing the aforementioned properties of fractional differential calculus. Using classic definition and property of fractional differential calculus, we extend integer‐order steepest descent approach to fractional field to implement fractional steepest descent approach. Then, based on the earlier fractional formulas, a FPDE based multiscale denoising model for texture image is proposed and further analyze optimal parameters value for FPDE based denoising model. The experimental results prove that the ability for preserving high‐frequency edge and complex texture information of the proposed fractional denoising model are obviously superior to traditional integral based algorithms, as for texture detail rich images. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。  相似文献   

3.
This paper aims to formulate the fractional quasi‐inverse scattering method. Also, we give a positive answer to the following question: can the Ablowitz‐Kaup‐Newell‐Segur (AKNS) method be applied to the space–time fractional nonlinear differential equations? Besides, we derive the Bäcklund transformations for the fractional systems under study. Also, we construct the fractional quasi‐conservation laws for the considered fractional equations from the defined fractional quasi AKNS‐like system. The nonlinear fractional differential equations to be studied are the space–time fractional versions of the Kortweg‐de Vries equation, modified Kortweg‐de Vries equation, the sine‐Gordon equation, the sinh‐Gordon equation, the Liouville equation, the cosh‐Gordon equation, the short pulse equation, and the nonlinear Schrödinger equation.  相似文献   

4.
In this work, we present numerical analysis for nonlinear multi‐term time fractional differential equation which involve Caputo‐type fractional derivatives for . The proposed method is based on utilization of fractional B‐spline basics in collocation method. The scheme can be readily obtained efficient and quite accurate with less computational work numerical result. The proposal approach transform nonlinear multi‐term time fractional differential equation into a suitable linear system of algebraic equations which can be solved by a suitable numerical method. The numerical experiments will be verify to demonstrate the effectiveness of our method for solving one‐ and two‐dimensional multi‐term time fractional differential equation.  相似文献   

5.
In this work, we deal with the existence of the fractional integrable equations involving two generalized symmetries compatible with nonlinear systems. The method used is based on the Bä cklund transformation or B‐transformation. Furthermore, we shall factorize the fractional heat operator in order to yield the fractional Riccati equation. This is done by utilizing matrix transform Miura type and matrix operators, that is, matrices whose entries are differential operators of fractional order. The fractional differential operator is taken in the sense of Riemann–Liouville calculus. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the ‐expansion method is proposed to establish hyperbolic and trigonometric function solutions for fractional differential‐difference equations with the modified Riemann–Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential‐difference equation into its differential‐difference equation of integer order. We obtain the hyperbolic and periodic function solutions of the nonlinear time‐fractional Toda lattice equations and relativistic Toda lattice system. The proposed method is more effective and powerful for obtaining exact solutions for nonlinear fractional differential–difference equations and systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, the sub‐equation method is presented for finding the exact solutions of a nonlinear fractional partial differential equations. For this, the fractional complex transformation method has been used to convert fractional‐order partial differential equation to ordinary differential equation. The fractional derivatives are described in Jumarie's the modified Riemann–Liouville sense. We apply to this method for the nonlinear time fractional differential equations. With the aid of symbolic computation, a variety of exact solutions for them are obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The purpose of this paper is to establish an averaging principle for stochastic fractional partial differential equation of order α > 1 driven by a fractional noise. We prove the existence and uniqueness of the global mild solution for the considered equation by the fixed point principle. The solutions for SPDEs with fractional noises can be approximated by the solution for the averaged stochastic systems in the sense of p-moment under some suitable assumptions.  相似文献   

9.
应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.  相似文献   

10.
第一部分,介绍分数阶导数的定义和著名的Mittag—Leffler函数的性质.第二部分,利用单调迭代方法给出了具有2序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性和唯一性.第三部分,利用上下解方法和Schauder不动点定理给出了具有2序列Riemann—Liouville分数阶导数微分方程周期边值问题解的存在性.第四部分,利用Leray—Schauder不动点定理和Banach压缩映像原理建立了具有n序列Riemann—Liouville分数阶导数微分方程初值问题解的存在性、唯一性和解对初值的连续依赖性.第五部分,利用锥上的不动点定理给出了具有Caputo分数阶导数微分方程边值问题,在超线性(次线性)条件下C310,11正解存在的充分必要条件.最后一部分,通过建立比较定理和利用单调迭代方法给出了具有Caputo分数阶导数脉冲微分方程周期边值问题最大解和最小解的存在性.  相似文献   

11.
研究了抽象空间中缓增分数阶微分方程解的吸引性.建立了Cauchy问题存在全局吸引解的充分条件.揭示了缓增分数阶导数求解分数微分方程解的特征.  相似文献   

12.
The simplest and probably the most familiar model of statistical processes in the physical sciences is the random walk. This simple model has been applied to all manner of phenomena, ranging from DNA sequences to the firing of neurons. Herein we extend the random walk model beyond that of mimicking simple statistics to include long‐time memory in the dynamics of complex phenomena. We show that complexity can give rise to fractional‐difference stochastic processes whose continuum limit is a fractional Langevin equation, that is, a fractional differential equation driven by random fluctuations. Furthermore, the index of the inverse power‐law spectrum in many complex processes can be related to the fractional derivative index in the fractional Langevin equation. This fractional stochastic model suggests that a scaling process guides the dynamics of many complex phenomena. The alternative to the fractional Langevin equation is a fractional diffusion equation describing the evolution of the probability density for certain kinds of anomalous diffusion. © 2006 Wiley Periodicals, Inc. Complexity 11: 33–43, 2006  相似文献   

13.
The paper provides the fractional integrals and derivatives of the Riemann‐Liouville and Caputo type for the five kinds of radial basis functions, including the Powers, Gaussian, Multiquadric, Matérn, and Thin‐plate splines, in one dimension. It allows to use high‐order numerical methods for solving fractional differential equations. The results are tested by solving two test problems. The first test case focuses on the discretization of the fractional differential operator while the second considers the solution of a fractional order differential equation.  相似文献   

14.
Riemann—Liouville型分数阶微分方程的微分变换方法   总被引:1,自引:0,他引:1  
本文在Riemann-Liouville分数阶导数的广义Taylor公式的基础上,建立了求解Riemann-Liouville型分数阶微分方程的微分变换方法.本文所建立的基于Riemann-Liouville分数阶导数微分变换方法给求解Riemann-Liouville分数阶导数的微分方程提供了一种新工具。  相似文献   

15.
We consider the solvability of fractional differential equations involving the Riesz fractional derivative. Our approach basically relies on the reduction of the problem considered to the equivalent nonlinear mixed Volterra and Cauchy-type singular integral equation and on the theory of fractional calculus. By establishing a compactness property of the Riemann–Liouville fractional integral operator on Lebesgue spaces and using the well-known Krasnoselskii's fixed point theorem, an existence of at least one solution is gleaned. An example is finally included to show the applicability of the theory.  相似文献   

16.
The purpose of the current study is to investigate IBVP for spatial-time fractional differential equation with Hadamard fractional derivative and fractional Laplace operator(−Δ)β. A new Hadamard fractional extremum principle is established. Based on the new result, a Hadamard fractional maximum principle is also proposed. Furthermore, the maximum principle is applied to linear and nonlinear Hadamard fractional equations to obtain the uniqueness and continuous dependence of the solution of the IBVP at hand.  相似文献   

17.
本文主要在带加性噪声随机分数阶微分方程的基础上,研究了一类更为困难的带乘性噪声随机分数阶微分方程Euler方法的弱收敛性与弱稳定性,并得到了类似的结论.首先构造了数值求解带乘性噪声随机分数阶微分方程的Euler方法,然后证明当分数阶α满足0α1/2时,该方法是1/2-α阶弱收敛的和弱稳定的,文末数值试验的结果验证了理论结果的正确性.  相似文献   

18.
In this paper, combining with a new generalized ansätz and the fractional Jacobi elliptic equation, an improved fractional Jacobi elliptic equation method is proposed for seeking exact solutions of space‐time fractional partial differential equations. The fractional derivative used here is the modified Riemann‐Liouville derivative. For illustrating the validity of this method, we apply it to solve the space‐time fractional Fokas equation and the the space‐time fractional BBM equation. As a result, some new general exact solutions expressed in various forms including the solitary wave solutions, the periodic wave solutions, and Jacobi elliptic functions solutions for the two equations are found with the aid of mathematical software Maple. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.

Uncertain fractional differential equations have been playing an important role in modelling complex dynamic systems. Early researchers have presented the extreme value theorems and time integral theorem on uncertain fractional differential equation. As applications of these theorems, this paper investigates the pricing problems of American option and Asian option under uncertain financial markets based on uncertain fractional differential equations. Then the analytical solutions and numerical solutions of these option prices are derived, respectively. Finally, some numerical experiments are performed to verify the effectiveness of our results.

  相似文献   

20.
Making use of the fractional differential operator, we impose and study a new class of analytic functions in the unit disk (type fractional differential equation). The main object of this paper is to investigate inclusion relations, coefficient bound for this class. Moreover, we discuss some geometric properties of the fractional differential operator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号