首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this review, methods to obtain the orientational order of topologically variant molecular mesogens using by one- and two-dimensional (2D) solid-state 13C nuclear magnetic resonance (NMR) spectroscopy are described. Besides 13C chemical shifts, the 13C─1H dipolar couplings measured from 2D-separated local field (SLF) technique are used for computing the order parameters of a variety of mesogens. The investigated molecules are composed of a variable number of rings in the core, that is, core ranging from simply one ring to five rings. Among the mesogens investigated, a special focus has been placed on mesogens with thiophene rings, which are gaining popularity as liquid crystalline organic semiconductors. The replacement of a phenyl ring by thiophene in the core has a dramatic influence on molecular topology, as observed from the measured order parameters. The review highlights the advantages of the 2D SLF method for understanding the local dynamics and for mapping the topology of mesogens through the measured order parameters. SLF NMR studies of as many as 24 molecular mesogens that vary in terms of the molecular structure as well as topology are covered in the review. Order parameters of the rings have been estimated from the 13C─1H dipolar couplings in the nematic, smectic A, smectic C, and tilted hexatic phases as well as in B1 and B2 mesophases of various mesogens. It is anticipated that, in the years to come, the 2D SLF method would provide advanced molecular information on structurally complex mesogens that are emerging in liquid crystal science through the incessant efforts of synthetic chemists. The mini review covers the orientational order of topologically variant molecular mesogens determined by 1D and 2D solid-state 13C NMR spectroscopy. Accordingly, rod-like, bent-core, and thiophene mesogens were subjected to 2D SLF measurements to get the order parameters from which the topology was established. The replacement of phenyl ring by thiophene and its influence on order parameters as well as on molecular topology is also discussed.  相似文献   

2.
Various two-dimensional (2D) NMR techniques are reported on a bent-core mesogen 4,6-dichloro-1,3-phenylenebis[4'-(9-decenyloxy)-1,1'-biphenyl] carboxylate in its nematic and solid phases in order to unambiguously assign its carbon-13 NMR spectrum. The (13)C chemical shifts from the molecular core were studied as a function of temperature to extract its molecular geometry and orientational order tensor. To this end, the chemical shift anisotropy tensors of some carbon sites were measured in the solid state of this mesogen using a recent method called the separation of undistorted powder patterns by effortless recoupling (SUPER). The average bending angle subtended by the two arms of the bent-core structure is determined to be 148.7 degrees. The C-H dipolar couplings obtained from the separated local field (SLF) experiment for the aromatic rings are used to find the local order parameter tensors.  相似文献   

3.
We present a mean field theory to describe volume phase transitions of side-chain liquid crystalline gels. Three different uniaxial nematic phases (N(1), N(2), and N(3)) are defined by using orientational order parameter S(m) of side-chain liquid crystals (mesogens) and S(b) of backbone chains. We derive the free energy for the three nematic phases of side-chain liquid crystalline gels dissolved in isotropic solvents and calculate the swelling curve of the gel, the order parameters of a backbone chain and of side-chain liquid crystals, and the deformation of the gel as a function of temperature and an electric field. We find isotropic-nematic (N(1), N(2), and N(3)) and N(1)N(2) phase transitions of the gels, depending on the interaction between a backbone chain and a side-chain liquid crystal.  相似文献   

4.
We present a systematic dissipative particle dynamics (DPD) study on the phase behavior, structure, and dynamics of rodlike mesogens. In addition to a rigid fused-bead-chain model with RATTLE constraint method, we also construct a semirigid model in which the flexibility is controlled by the bending constant of k(φ). Using this notation, the rigid model has an infinite bending constant of k(φ)=∞. Within the parameter space studied, both two kinds of models exhibit the nematic and smectic-A phases in addition to the isotropic and solid phases. All of the phase transitions are accompanied by the discontinuities in the thermodynamical, structural, and dynamical quantities and the hysteresis around the transition points, and are therefore first order. Note that the obtained solid state exhibits an in-layer tetragonal packing due to the high density. For the rigid model, the simulations show that the liquid crystal phases can be observed for mesogens with at least five beads and the nematic phase is the first one to appear. More importantly, the phase diagram of seven-bead-chain models is obtained as a function of k(φ) and temperature. It is found that decreasing the value of k(φ) reduces the anisotropy of molecular shape and the orientational ordering, and thereby shifts the liquid crystal phases to the lower temperature end of the phase diagram. Due to the different k(φ) dependence of phase transition temperatures, the nematic phase range exhibits a more marked narrowing than the smectic-A phase as k(φ) is reduced, implying that the flexibility has a destabilizing effect on the nematic and smectic-A phases. We also have investigated the anisotropic translational diffusion in liquid crystal phases and its temperature and flexibility dependence. In our study, we find that the phases formed, their statical and dynamic properties, as well as the transition properties are in close accord with those observations in real thermotropic liquid crystals. It is clear that both the rigid and semirigid models we used are valuable models with which to study the behavior of thermotropic liquid crystals using DPD algorithm.  相似文献   

5.
《Liquid crystals》1998,25(6):733-744
Miscibility phase diagrams of mixtures of side-on side chain liquid crystalline polymers (s-SCLCP) and low molar mass liquid crystals (E48 and E44) have been established by means of polarized optical microscopy and light scattering. E48 and E44 are cyanobiphenyl-based eutectic nematic liquid crystal (LC) mixtures with nematic-isotropic transition temperatures of 93 and 105 C, respectively. The phase diagram of the s-SCLCP/E48 system reveals the coexistence of an isotropic nematic region and a single nematic phase in order of descending temperature. The single nematic phase suggests that the pair is miscible in the nematic region. On the other hand, the s-SCLCP/E44 mixture shows liquid liquid and nematic nematic coexistence phases, suggestive of the immiscibility character of the pair. These nematic phase diagrams of the s-SCLCP/E48 and s-SCLCP/E44 have been analysed in the context of the combined Flory-Huggins (FH) free energy for isotropic mixing and the Maier-Saupe (MS) free energy for nematic ordering of the mesogens. This combined FH/MS theory is capable of predicting the observed nematic phase diagrams consisting of liquid liquid, liquid nematic, nematic nematic, and the pure nematic regions. The change of colour accompanying the appearance and disappearance of the inversion walls may be attributed to the temperature dependence of birefringence.  相似文献   

6.
Abstract

Seven new derivatives of 4-octyloxy-N-(4-substituted benzylidene) aniline have been synthesized. 4-Trifluoromethyl and 4-trifluoromethoxy derivatives exhibit stable smectic B and A phases, respectively, while both the 4-methyl and 4-methoxy derivatives have monotropic nematic phases. Fundamental liquid crystalline properties such as entropies of the phase transitions, microscopic textures, smectic layer spacings, orientational order parameters, and molecular dipole moments were determined. It has been revealed that moderately polar nature of these mesogens act to stabilizing monolayer smectic states. The smectic A phase of 4-trifluoromethoxy derivative exhibit very high orientational order. None of the disubstituted compounds, 3,5-bis(trifluoromethyl), 3,5-dimethyl, and 3,5-dimethoxy derivatives were mesogenic. The effect of terminal trifluoromethylation on the liquid crystalline properties is discussed.  相似文献   

7.
~(13)C-NMR chemical shifts of model compound of a novel side chain liquid crystalline polymer, poly 2.5-his (4-alkoxybenzoyloxy) styrene , have been assigned in this study. Moreover, by using high-resolution solid-state CP/MAS (cross polarization/magic angle spinning) technique, the spectrum shows that in the crystalline state the ester linkage has a conformation nearly perpendicular to the either side of ring planes, and that the alkoxy groups are not fully in zigzag form. The possible conformational changes around the mesogens from the solid state to the mesophase are discussed.  相似文献   

8.
We report on the phase behavior and microdomain structure of two types of diblock copolymers containing a liquid crystal (LC) block joined to a flexible coil block. Consideration of the symmetry groups of the liquid crystalline phases and of the block copolymer microdomain structures provides a rationale for predicting the possible types of liquid crystalline block copolymer morphologies. Both previously reported and newly discovered structural types are identified. Possible organizational schemes are developed for the mesogens and periodic disclination defects with respect to the intermaterial dividing surfaces separating the liquid crystalline and flexible coil domains. The first type of copolymer investigated has a rod-like LC block whereas the second type copolymer has a side chain LC block. Five different rod-coil diblocks based on poly(hexyl isocyanate-b-styrene) P(HIC-b-S) were synthesized by anionic polymerization. Wavy lamellae, zig-zag and arrowhead microdomain morphologies corresponding to smectic-C and smectic-O structures were observed depending on the composition. These layered phases have the director (PHIC chain axis) tilted at various orientations with respect to the layer normal. Side-chain LC diblocks based on functionalized poly(isoprene-b-styrene) P(I-b-S) were also investigated. These polymers were synthesized using polymer analogous chemistry from P(I-b-S) precursors. Three different mesogenic groups were attached to the PI blocks: one based on biphenyl benzoate and two based on azobenzene. The microdomain structures found for the functionalized poly(isoprene side-chain LC-b-styrene) P(ILC-b-S) diblocks are typical of traditional coil-coil diblocks (lamellae and cylinders). However, these morphologies possess an additional smectic layering of the mesogens within the microdomains of the LC block. In the case of the rod-coil diblocks, the transformation from an initially isotropic state to the final microphase separated solid state occurs via nematic and then smectic liquid crystalline states, whereas for the side-chain LC-coil cases, the microphase separation transition occurs prior to development of orientational order. The long-range microdomain order of LC block-coil block copolymers can extend over very large distances due to the influence of the orientational ordering of the LC block.  相似文献   

9.
The theoretically predicted optimum length/breadth/width ratio for maximizing shape biaxiality was investigated experimentally by the facile and successful synthesis of cross‐shaped compound 3 , which showed enantiomeric nematic phase behavior. This cross‐like core structure could alternatively be viewed as two fused V‐shaped mesogens, which have recently immerged as a new direction in biaxial nematic research, at the bending tips that can act as a new structure for biaxial investigations. Whilst the thermal analysis data of compound 3 did not meet the expected theoretical values for biaxial nematics, surface‐induced biaxiality was evidenced by optical studies. Cluster‐size analysis within the nematic phase of compound 3 revealed the formation of meta‐cybotactic nematics, which approached the cluster sizes of cybotactic nematics. The split small‐angle 2D X‐ray diffraction patterns of magnetic‐field‐aligned samples indicated that the nematic phase was composed of small smectic C‐like clusters with the tilting of molecules within the clusters. The wide‐temperature‐range enantiomeric nematic phase of cross‐like compound 3 enabled the molecular skeleton to serve as an alternative skeleton to bent‐rod mesogens, which exhibited nematic phases with the potential competition of transitions to higher‐order liquid‐crystalline phases and crystallization, for future biaxial investigations.  相似文献   

10.
Thermotropic liquid crystalline compounds are of considerable importance due to their potential applications as advanced functional materials. A mesogen consisting of a terminal dimethylamino group, which can act as a charge-transfer donor, is particularly valuable for its light emission and nonlinear optical properties. In this study, we report the solid-state NMR investigation of the nematic behavior of one such novel mesogen (4-(dodecyloxy)benzoic acid 4-[((4-(dimethylamino)phenyl)imino)methyl]phenyl ester). Static and MAS experiments were performed on nematic and crystalline phases of the compound to measure (13)C chemical shift, (13)C-(1)H dipolar coupling, and (1)H chemical shift values. 2D chemical shift correlation of (1)H and (13)C nuclei confirmed the (13)C chemical shift values determined from 1D CPMAS experiments. The appearance of more peaks in both CPMAS and (13)C-(1)H HETCOR spectra of a crystalline solid suggests the heterogeneous orientations of phenyl rings of the mesogenic core. Variable-temperature experiments infer the motional averaging of these orientations before melting. The (1)H-(13)C dipolar coupling values, measured by 2D PITANSEMA experiments, were used to determine the orientational order of the mesogenic core at various temperatures. The influence of the linking unit and terminal substituents on the order parameter values of the mesogenic core is discussed.  相似文献   

11.
Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics.  相似文献   

12.
孟庆伟  谌东中 《化学通报》2005,68(9):667-673
从液晶基元连接方式、液晶分子拓扑结构以及凝聚态自组织方式等方面扼要介绍和评述了非传统型液晶分子设计与工程研究进展,并重点介绍了可望引起液晶显示技术革命的双轴向列相香蕉形液晶研究的突破性工作,展望了非传统型液晶分子设计和复杂自组织超分子液晶领域今后的发展方向。  相似文献   

13.
Summary: We present a molecular dynamic simulation of a side chain liquid crystalline elastomer (LCE) under load. The LCE is composed of a flexible tetrafunctional diamond like network with rod-like mesogens attached to the network. As a precursor of the LC elastomer a flexible polymer network in a low molecular liquid-crystal (LC) solvent was used. The phase behavior of the LCE under uniaxial stretching up to the deformations of λ = 1.5 and 2.0 at different densities was studied. As in the non-stretched case upon density increase an isotropic to nematic phase transition occurs. However, in contrast to thermotropic side chain LC elastomers the stress induced shift transition is not observed. The stretching slightly increases the anisotropy of translational diffusion of mesogens in the nematic state. The stress-strain dependence for LCE both in the isotropic and the nematic states is obtained. Elastic modulus increases at high values of order parameter.  相似文献   

14.
Development of new liquid crystalline materials exhibiting interesting properties and phases continues to be an enabling enterprise in the forward march of their successful display and non-display applications. The design and synthesis of a homologous series of liquid crystalline bent-core compounds derived from the oxadiazole bisaniline moiety and the phase behavior of three members of the series that exhibit nematic, smectic C, and dark conglomerate phases is reported. The liquid crystalline phases exhibited by these mesogens are characterized using polarized optical microscopy, differential scanning calorimetry and x-ray scattering techniques. All three homologs prepared exhibit the nematic phase. Interestingly, the homolog with short hexyl terminal chains exhibits only the nematic phase that is stable over a very broad, nearly 100 K wide, temperature range. The compound with terminal octyl chains shows the chiral dark conglomerate phase below the nematic phase despite the bent molecules being achiral. The homolog with dodecyl alkyl chains is found to possess the smectic-C and two additional lamellar phases besides the nematic phase. These compounds enrich the library of achiral bent-core materials capable of exhibiting chiral and nematic phases.  相似文献   

15.
A series of new molecular discs (RDn, here n is the number of carbon atoms between the rod and disc mesogens) was synthesized via the chemical attachment of six cyanobiphenyl calamitic (rod) mesogens (R) linked to the triphenyl discotic (disc) mesogen (D) with a series of six alkyl chain linkages (n = 6-12). In this study, phase structures, transitions, and liquid crystalline (LC) behavior of the RD12 compound with 12 carbon atoms in each alkyl chain linkage between the rod and disc mesogens were investigated. Differential scanning calorimetry, polarized light microscopy, wide-angle X-ray diffraction (WAXD), and selected area electron diffraction (SAED) allowed us to identify three ordered phases below the isotropization temperature: nematic (N) LC and K1 and K2 crystalline phases. On the basis of the structural results obtained via 2D WAXD experiments on oriented samples and SAED experiments on single crystals, the K1 crystalline unit cell was determined to be triclinic with the dimensions of a = 1.36 nm, b = 1.45 nm, c = 2.11 nm, alpha = 85 degrees, beta = 100 degrees, and gamma = 50 degrees. The K2 phase was metastable with respect to the K1 phase. It also possessed a triclinic unit cell with a = 1.40 nm, b = 1.51 nm, c = 1.92 nm, alpha = 87 degrees, beta = 117 degrees, and gamma = 62 degrees. Molecular packing models for the crystalline phases were proposed on the basis of the diffraction results. In the whole range of ordered structures, it was found that RD12 molecular discs are intercalated. Both triphenyl discotic mesogens and cyanobiphenyl calamitic mesogens are completely interdigitated.  相似文献   

16.
For the first time, coordination geometry and structure of metal binding sites in biologically relevant systems are studied using chemical shift parameters obtained from solid-state NMR experiments and quantum chemical calculations. It is also the first extensive report looking at metal-imidazole interaction in the solid state. The principal values of the (113)Cd chemical shift anisotropy (CSA) tensor in crystalline cadmium histidinate and two different cadmium formates (hydrate and anhydrate) were experimentally measured to understand the effect of coordination number and geometry on (113)Cd CSA. Further, (13)C and (15)N chemical shifts have also been experimentally determined to examine the influence of cadmium on the chemical shifts of (15)N and (13)C nuclei present near the metal site in the cadmium-histidine complex. These values were then compared with the chemical shift values obtained from the isostructural bis(histidinato)zinc(II) complex as well as from the unbound histidine. The results show that the isotropic chemical shift values of the carboxyl carbons shift downfield and those of amino and imidazolic nitrogens shift upfield in the metal (Zn,Cd)-histidine complexes relative to the values of the unbound histidine sample. These shifts are in correspondence with the anticipated values based on the crystal structure. Ab initio calculations on the cadmium histidinate molecule show good agreement with the (113)Cd CSA tensors determined from solid-state NMR experiments on powder samples. (15)N chemical shifts for other model complexes, namely, zinc glycinate and zinc hexaimidazole chloride, are also considered to comprehend the effect of zinc binding on (15)N chemical shifts.  相似文献   

17.
Three types of laterally connected triplet mesogens and one quadruplet mesogen incorporating rigid p-terphenyl units have been synthesized. Their liquid crystalline behaviour was investigated by polarizing microscopy, differential scanning calorimetry and X-ray scattering. The lateral fixation of three rod-like 4,4'-didecyloxy-p-terphenyl units mostly gives liquid crystalline materials with considerably increased mesophase stabilities with respect to the parent 4,4'-didecyloxy-2'-methyl-p-terphenyl. The mesophase stability strongly depends on the type of connection. The highest clearing temperatures were observed for triplets which are connected in line with each other (type I) and triplets which are laterally connected in a peripheral manner. Only the oligomesogens of type III are not liquid crystalline. All compounds incorporating exclusively decyloxy chains exhibit smectic phases (SA and Sc). For the ethoxy derivatives the nematic phase was found.  相似文献   

18.
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The relationship between the helical twisting power (HTP) of cholesteric liquid crystals and the molecular structure of the chiral mesogens has been investigated. Rod-like mesogens are compared with analogues bearing a bulky lateral branch. Additionally, the HTP of induced cholesteric phases formed by chiral guest molecules in nematic host phases has been studied in terms of different molecular structures. The paper gives information on the influence of bulky lateral groups in mesogens on the HTP.  相似文献   

20.
In a previous deuterium NMR study conducted on a liquid crystalline (LC) polymer with laterally attached book-shaped molecules as the mesogenic moiety, we have revealed a biaxial nematic phase below the conventional uniaxial nematic phase (Phys. Rev. Lett. 2004, 92, 125501). To elucidate details of its formation, we here report on deuterium NMR experiments that have been conducted on different types of LC side-chain polymers as well as on mixtures with low-molar-mass mesogens. Different parameters that affect the formation of a biaxial nematic phase, such as the geometry of the attachment, the spacer length between the polymer backbone and the mesogenic unit, as well as the polymer dynamics, were investigated. Surprisingly, also polymers with terminally attached mesogens (end-on polymers) are capable of forming biaxial nematic phases if the flexible spacer is short and thus retains a coupling between the polymer backbone and the LC phase. Furthermore, the most important parameter for the formation of a biaxial nematic phase is the dynamics of the polymer backbone, as the addition of a small percentage of low molar mass LC to the biaxial nematic polymer from the original study served to shift both the glass transition and the appearance of detectable biaxiality in a very similar fashion. Plotting different parameters for the investigated systems as a function of T/Tg also reveals the crucial role of the dynamics of the polymer backbone and hence the glass transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号