首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultraquenching technique was used to prepare thin (ca. 1000 Å) amorphous films of polypivalolactone and poly(4-methyl-pentene-1). These films were characterized by electron microscopy, electron diffraction, and dynamic mechanical analysis. Other ultraquenched films of these polymers were crystallized by annealing for various times in the vicinity of their glass transition temperatures. Electron microscopy and electron diffraction were used to follow the reorganization of their structures.

Evidence for a double Tg in polypivalolactone (PPVL) was found, with crystallization of annealed, ultraquenched films occurring just above Tg (L) = 270°K. A Tg (U) = 340°K was noted. When the disordered glass was annealed above Tg (L), polypivalolactone crystallized into the a crystal form, which is composed of antiparallel chain segments, suggesting a chain-folded crystallization mechanism.

Poly(4-methyl-pentene-1) (P4MP1) gave evidence for Tg (L) = 220°K and Tg (U) = 325°K by dynamic mechanical analysis. However, morphology and electron diffraction showed that significant crystallization of ultraquenched polymer did not occur until Tg (U) was reached. X-ray data also supported this conclusion, which is explained by the lower density of the crystal phase of P4MP1 (compared to amorphous material) below 320°K. Long-term annealing of films at Tg (U) resulted in the formation of single-crystal structures, again indicative of a mechanism of chain-folded crystallization from the glass.  相似文献   

2.
The effect of annealing amorphous linear polyethylene films prepared by an improved ultraquenching technique at temperatures just below and above a dynamic mechanical relaxation peak (torsion braid) observed at ∽190K has been characterized by electron microscopy and torsion braid analysis. Based on the results described, this peak is believed related to the lower glass transition temperature Tg(L), the Tg of wholly amorphous linear polyethylene, whereas the β peak at 260K is Tg (upper). Annealing just below Tg (L) results in a growth in size of the nodules observed in the as-quenched samples, whereas annealing above Tg (L) can result in the growth of single crystal-like structures, spherulites, and shish-kebobs. Storage of the crystallized samples at room temperatures results in a decrease in size of the relaxation peak during subsequent torsion braid spectroscopy measurements. The results indicate significant amounts of molecular motion can occur during crystallization even at Tg.  相似文献   

3.
Structural changes in glassy poly(ethylene terephtbalate) and their effects on its crystallization, melting, and various properties were studied. Quenched, annealed below Tg, crystallized, and drawn samples were studied using calorimetry, wide-and small-angle X-ray diffraction, mechanical spectroscopy, and stress-strain analysis. All results indicate some level of order in the glassy polymer which can be increased by annealing below Tg. This order still exists at tempertures above Tg and affects the properties of the polymer.  相似文献   

4.
Confinement effects in polystyrene and poly(methyl methacrylate) films and nanocomposites are studied by fluorescence. The ability to employ an intensive measurable, the excited-state fluorescence lifetime, in defining the glass transition temperature, Tg, of polymers is demonstrated and compared to the use of an extensive measurable, fluorescence intensity. In addition, intrinsic fluorescence from the phenyl groups in polystyrene is used to determine the Tg-confinement effect in films as thin as ~15 nm. The decrease in Tg with decreasing film thickness (below ∼60 nm) agrees well with results obtained by extrinsic pyrene fluorescence. Dye label fluorescence is used to quantify the enhancement in Tg observed with decreasing thickness (below ~90 nm) in poly(methyl methacrylate) films; addition of 2–4 wt% dioctyl phthalate plasticizer reduces or eliminates the Tg-confinement effect in films down to 20 nm thickness. Intrinsic polystyrene fluorescence, which is sensitive to local conformation, is used to quantify the time scales (some tens of minutes) associated with stress relaxation in thin and ultrathin spin-coated films at Tg + 10 K. Finally, the shape of the fluorescence spectrum of pyrene doped at trace levels in polystyrene films and polystyrene-silica nanocomposites is used to determine effects of confinement on microenvironment polarity.  相似文献   

5.
Fluorescence intensity measurements of chromophore-doped or -labeled polymers have been used for the first time to determine the effects of decreasing film thickness on glass transition temperature, T g, the relative strength of the glass transition, and the relative rate of physical aging below T g in supported, ultrathin polymer films. The temperature dependence of fluorescence intensity measured in the glassy state of thin and ultrathin films of pyrene-doped polystyrene (PS), poly(isobutyl methacrylate) (PiBMA), and poly(2-vinylpyridine) (P2VP) differs from that in the rubbery state with a transition at T g. Positive deviations from bulk T g are observed in ultrathin PiBMA and P2VP films on silica substrates while substantial negative deviations from bulk T g are observed in ultrathin PS films on silica substrates. The relative difference in the temperature dependences of fluorescence intensity in the rubbery and glassy states is usually reduced with decreasing film thickness, indicating that the strength of the glass transition is reduced in thinner films. The temperature dependence of fluorescence intensity also provides useful information on effects of processing history as well as on the degree of polymer-substrate interaction. In addition, when used as a polymer label, a mobility-sensitive rotor chromophore is demonstrated to be useful in measuring relative rates of physical aging in films as thin as 10 nm. Received 21 August 2001  相似文献   

6.
Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: Tg(bulk)-Tg(23 nm) = 10 °\ensuremath T_{{\rm g}}({\rm bulk})-T_{{\rm g}}(23{\,\mbox{nm}})= 10 ^{\circ} C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.  相似文献   

7.
郑福前 《物理学报》1991,40(2):262-268
本文测量了金属玻璃Ni30Zr70的动态粘度和稳态粘度,结果表明,由于结构弛豫的影响,动态粘度随升温速率的减小而线性增加,在玻璃转变温度Tg以下,动态粘度与温度的关系可以用Arrhenius方程进行描述,稳态粘度与温度的依赖关系满足Fulcher-Vogel方程。从4种不同升温速率的高温(结晶开始温度Tx)动态粘度值,给出金属玻璃Ni30Zr70的平衡粘度。在630—670K  相似文献   

8.
本文对Ge/An,Ge/Ag,双层膜和Ge-An,Ge-Ag合金膜的退火过程进行了透射电子显微镜观测,对Ge/多晶Au(或Ag)还进行了加热过程的原位观测。观测表明,多晶Au和单晶Au膜的存在使非晶Ge的晶化温度Tc的下降显著不同,可由晶界三叉点等处为非晶Ge的有利形核位置来解释,双层膜的缩聚区中由于局域优先晶化的影响,不仅Tc(=100℃)比非缩聚区中(Tc=150℃)低,而且形成直径为1—2μm的Ge大晶粒,而Ge/多晶Ag和Ge/单晶Ag膜的Tc均约为280℃,合金膜中金属含量较低时(CAu<17at%,CAg<18at%),Tc高于相应的Ge/多晶Au(Ag)膜;金属含量较高时,Tc低于Ge/多晶Au(Ag)膜。这说明过饱和金属原子的存在使得非晶Ge的晶化势垒大大降低。 关键词:  相似文献   

9.
Ryutaro Souda 《Surface science》2011,605(7-8):793-798
We have investigated how the structures of vapor-deposited glassy films change with increasing temperature by using time-of-flight secondary ion mass spectrometry and ion scattering spectroscopy. It is found that intermixing of the topmost layer of an ethylbenzene film occur at temperature (~ 80 K) considerably lower than the glass transition temperature (Tg = 118 K) when the film is deposited at 20 K. This phenomenon can be interpreted as the occurrence of a two-dimensional liquid that diffuses into pores of the film, which is evidenced from comparison with surface diffusivity measurements using a porous silicon layer. For nonporous films deposited at higher temperatures, the molecules intermix gradually prior to the abrupt film morphology change at Tg. This phenomenon can be interpreted as decoupling between translational diffusivity and viscosity in the bulk. The film thickness has no significant effects on the evolution of supercooled liquid at Tg except for the monolayer film, whereas crystallization is quenched for the films thinner than 8 monolayers. The roles of the 2D liquid on the surface and an immobilized layer formed at the interface are discussed in finite-size effects on the glass-liquid transition and crystallization.  相似文献   

10.
An isothermal kinetic diagram for the beginning of homogeneous nucleation is constructed using the molecular-dynamics model of an instantaneously supercooled iron melt near the icosahedral percolation transition temperature identified with the glass transition temperature T g . This diagram is compared with the theoretical one calculated using quantitative information obtained by analyzing the kinetics of the initial stage of growth of supercritical nuclei at temperatures higher than T g . A satisfactory coincidence of the theoretical curve with computer simulation data at temperatures higher than T g and substantial disagreement with these data below T g , where crystallization is necessarily preceded by the formation of an icosahedral percolation cluster, demonstrate the substantive influence of an icosahedral substructure on the nucleation rate predicted by the classical theory.  相似文献   

11.
We present a detailed study of free polymer surfaces and their effects on the measured glass transition temperature (Tg) of thin polystyrene (PS) films. Direct measurements of the near-surface properties of PS films are made by monitoring the embedding of 10 and 20 nm diameter gold spheres into the surface of spin-cast PS films. At a temperature T = 378K( > Tg), the embedding of the spheres is driven by geometrical considerations arising from the wetting of the gold spheres by the PS. At temperatures below Tg ( 363K < T < 370K), both sets of spheres embed 3-4 nm into the PS films and stop. These studies suggest that a liquid-like surface layer exists in glassy PS films and also provide an estimate for the lower bound of the thickness of this layer of 3-4 nm. This qualitative idea is supported by a series of calculations based upon a previously developed theoretical model for the indentation of nanoscale spheres into linear viscoelastic materials. Comparing data with simulations shows that this surface layer has properties similar to those of a bulk sample of PS having a temperature of 374 K. Ellipsometric measurements of the Tg are also performed on thin spin-cast PS films with thicknesses in the range 8nm < h < 290nm. Measurements are performed on thin PS films that have been capped by thermally evaporating 5 nm thick metal (Au and Al) capping layers on top of the polymer. The measured Tg values (as well as polymer metal interface structure) in such samples depend on the metal used as the capping layer, and cast doubt on the general validity of using evaporative deposition to cover the free surface. We also prepared films that were capped by a new non-evaporative procedure. These films were shown to have a Tg that is the same as that of bulk PS (370±1 K) for all film thicknesses measured (> 7 nm). The subsequent removal of the metal layer from these films was shown to restore a thickness-dependent Tg in these samples that was essentially the same as that observed for uncapped PS films. An estimate of the thickness of the liquid-like surface layer was also extracted from the ellipsometry measurements and was found to be 5±1 nm. The combined ellipsometry and embedding studies provide strong evidence for the existence of a liquid-like surface layer in thin glassy PS films. They show that the presence of the free surface is an important parameter in determining the existence of Tg reductions in thin PS films.  相似文献   

12.
The T g of organic liquids confined to nanoporous matrices and that of thin polymer films can decrease dramatically from the bulk value. One possible explanation for this phenomenon is the development of hydrostatic tension during vitrification under confinement that results in a concomitant increase in the free volume. Here we present experimental evidence and modeling results for ortho-terphenyl (o-TP) confined in pores as small as 11.6 nm that indicate that, although there is an important hydrostatic tension in the liquid in the pores, it does not develop until near the reduced T g of the constrained material --well below the bulk T g. Enthalpy recovery for the o-TP in the nanopores exhibits accelerated physical aging relative to the bulk, as well as a leveling off of the fictive temperature at equilibrium values greater than the aging temperature. An adaptation of the structural recovery model that incorporates vitrification under isochoric conditions is able to provide a quantitative explanation for the apparently anomalous aging observed in nanopore confined liquids and in thin polymeric films. The results strongly support the existence of an intrinsic size effect as the cause of the reduced T g. Received 3 September 2001  相似文献   

13.
We have used transmission ellipsometry to measure the glass transition temperature, Tg, of freely-standing films of atactic and syndiotactic poly(methyl methacrylate) (PMMA). We have prepared films with different molecular weights, MW, (159×103 < M w < 1.3×106) and film thicknesses, h, ( 30nm < h < 200 nm). For the high-MW ( M w > 509×103) atactic PMMA films, we find that Tg decreases linearly with decreasing h, which is qualitatively similar to previous results obtained for high-MW freely-standing polystyrene (PS) films. However, the overall magnitude of the Tg reduction is much less (by roughly a factor of three) for the high-MW freely-standing PMMA films than for freely-standing PS films of comparable MW and h. The observed differences between the freely-standing PMMA and PS film data suggest that differences in chemical structure determine the magnitude of the Tg reduction and we discuss the possible origins of these differences. Our analysis of the MW-dependence of the Tg reductions suggests that the mechanism responsible for the MW-dependent Tg reductions observed in the high-MW freely-standing films is different than that responsible for the MW-independent Tg reductions observed in the low-MW freely-standing and supported films.  相似文献   

14.
The glass transitions in talc- and titanium-dioxide-filled free films of hydroxypropyl methylcellulose (HPMC) as well as HPMC in combination with either polyethylene glycol (PEG) 400 or polyvinyl alcohol (PVA) have been examined by differential scanning calorimetry. The glass transition temperatures (Tg's) of HPMC and HPMC/PEG 400 films were increased in the presence of either talc or titanium dioxide, with the former the more effective Tg enhancer. In contrast, the Tg 's of HPMC/PVA films were virtually unchanged in the presence of the fillers, and this behavior was attributed to the influence of the vinyl backbone of PVA. The Tg's of filled and unfilled HPMC and HPMC/PVA films were lower after storage for 1 year, but the Tg of HPMC/PEG 400 remained unchanged. Phase separation of the mixed polymer systems also occurred following prolonged storage. These phenomena were related to changes in the moisture content and crystal-linity of the films.  相似文献   

15.
When mixtures of poly(ester carbonate) (PEC) and poly(ethylene terephthalate) (PET) containing up to two-thirds of the latter are melt extruded, they produce a single-phase amorphous “alloy.” This alloy is characterized by a sharp, single, composition-dependent glass transition temperature, Tg. When annealed below Tg, the alloy remains unaltered, but when annealed above its Tg, the alloy separates into minute pure-PET crystallites and an amorphous PEC/PET phase. The thermal and dynamic mechanical behavior, crystallization kinetics, and SAXS patterns all strongly suggest the PEC-rich alloys to be solid solutions in which the PET molecules are dispersed individually or in small aggregates containing only a few PET molecules each. Calculations of the interaction parameter and assumed interfacial layer thickness tend to support this suggestion. Use of appropriate solvents allows one to selectively dissolve the PEC and recover from the alloys both PET and PEC in the original purity and molecular weights. Diffusion constants of PET molecules through the amorphous alloys were obtained from studies of PET crystallization above Tg of the alloys. The magnitude of the constants are in the range of expectation. The mechanical properties of the amorphous alloys in the glassy state do not deviate greatly from simple additivity of the respective properties of the parent polymers. However, the melt viscosity of the PEC-rich alloys and their plateau modulus above T show drastic decreases from straight additivity. A qualitative, but not quantitative, explanation of these observations is offered.  相似文献   

16.
Theoretical analysis of flexible-chain polymer crystallization was carried out over a wide temperature range from glass transition temperature Tg to melting temperature Tm. Temperature dependence of dynamic behavior manifesting in the decrease of crystallizing length with decreasing temperature was taken into account. The dependence of crystallizing length on temperature was obtained using chosen values of it at Tg and Tm. The crystallization with the formation of folded-chain crystals (type I) and uncoiled-chain crystals (type II) was considered. The analysis of thermodynamical favorability of both types of crystals with respect to temperature made it possible to obtain a flexible-chain crystallizing polymer phase diagram. This diagram shows the existence of two ranges where type II crystal formation is more favorable: a narrow range near Tm and the wider one near Tg, separated by the temperature range of crystallization with chain folding. Temperature dependences of type II crystals fraction in the system and their size were calculated. It is shown that the crystallization at considerable supercooling leads to the appearance of a great number of type II small crystals connected by tie chains. The system formed is characterized by a high degree of crystallite interconnection.  相似文献   

17.
Tellurite glasses of the system (100–x)TeO2xBaO, with x = 05, 10, 15 and 20 wt%, have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions, applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC, using continuous-heating techniques. In addition, from the dependence of the glass-transition temperature (T g) on heating rate, the activation energy for the glass transition was derived. Similarly, the activation energy of the crystallization process was determined and the crystallization mechanism characterized. The thermal stability of these glasses are considered in terms of the characteristic temperatures, T g and T in (the onset temperature of crystallization), via ΔT = T in?T g and a kinetic parameter K(T g). The results confirm that thermal stability decreases with increasing BaO content. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of α-TeO2, γ-TeO2 and BaTeO3 in the remaining amorphous matrix.  相似文献   

18.
铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征   总被引:15,自引:2,他引:13       下载免费PDF全文
铝诱导非晶硅薄膜晶化可以降低退火温度、缩短退火时间,是制备多晶硅薄膜的一种重要方法.在此基础上,通过在退火过程中加入电场加速了界面处硅、铝原子间的互扩散,实现了非晶硅薄膜的快速低温晶化.实验结果表明,外加电场,退火温度为400℃,退火时间为60min时,薄膜的晶化率大于60%;退火温度为450℃退火时间为30min时,薄膜已经呈现明显的晶化现象;退火温度为500℃退火时间为15min时,薄膜的x射线多晶峰强度与非晶峰强度之比为未加电场的3—4倍. 关键词: 非晶硅薄膜 多晶硅薄膜 外加电场  相似文献   

19.
The relationship between morphology and several physical properties (tensile, thermal, dielectric, and dynamic mechanical properties) of amorphous poly-bisphenol-A-carbonate was examined as a function of annealingtime at temperatures below the glass transition temperature (Tg). The change in structure of the amorphous films was studied by means of X-ray diffraction and with electron diffraction using a rotating sector in an electron microscope as well as by electron micrographs of replicas of surfaces prepared by etching with dilute aqueous NaOH solutions. The changes in morphology and physical properties caused by annealing below Tg are, in general, closely related. The relationship cannot be explained only by changes in free volume; it is proposed that changes in the degree and type of order (nodular structure) also play a role. The design and application of the rotating sector is described in an Appendix.  相似文献   

20.
The glass transition temperature and the dynamics of the α-process have been investigated using dielectric relaxation spectroscopy for single and stacked thin films of poly(2-chlorostyrene) (P2CS). The stacked film consists of 10 layers of single thin films with thickness of 12 nm or 18 nm. The glass transition temperature T g of the single thin films of P2CS is found to decrease with decreasing film thickness in a similar way as observed for polystyrene thin films. The magnitude of the depression of T g for the stacked thin films is larger than that of the single thin films with corresponding thickness. The depression of the temperature at which the dielectric loss shows a peak due to the α-process at a given frequency, T α, is larger than that of the single thin films, although the magnitude is smaller than that of T g . Annealing at a high temperature could cause the T g and T α of the stacked thin films to approach the values of the bulk system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号