首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 928 毫秒
1.
纳米硅结构使能带的带隙展宽,并形成准直接能带带隙结构.弯曲表面上的某些键合可以在带隙中产生局域电子态,计算表明:纳米硅弯曲表面上的Si-N,Si=O和Si-O-Si键合能够分别在带隙中2.02 eV,1.78 eV和2.03 eV附近形成局域态子带,对应了实验光致荧光谱(PL)中605 nm处的LN线、693 nm处的LO1线和604 nm处的LO2线特征发光.特别是,Si-Yb键合在纳米硅弯曲表面上可以将发光波长调控到光通信窗口,在1310 nm到1600 nm范围形成LYb线特征发光.  相似文献   

2.
在真空或惰性气体中制备的硅量子点发光很弱,硅量子点表面被氢较好钝化后的发光也不强.硅量子点表面的硅氧键或硅氮键能破坏这种钝化并在带隙中形成局域电子态,在局域电子态对应的激活中心有很强的发光.可以用这种方式构建发光物质,控制硅量子点表面的键合可获得不同波长的发光.在硅量子点的发光激活处理过程中,退火是很重要的环节.对于硅量子点发光激活的机理,本文给出了相应的物理模型.实验证明,在600和700 nm波长附近观察到了激活硅量子点的受激发光,在1500 nm到1600 nm波长范围观察到了激活硅量子点的较强发光.  相似文献   

3.
黄伟其  吕泉  王晓允  张荣涛  于示强 《物理学报》2011,60(1):17805-017805
纳秒脉冲激光在氮气、氧气和空气等不同氛围中加工出的硅量子点都有光致荧光(PL)的发光增强效应,并且在700 nm波长附近观察到了受激辐射.在不同氛围下生成的样品有几乎相同的PL光谱分布,其原因是不同氛围下加工出的样品带隙中有相同的电子态分布.计算结果显示:当硅量子点表面被氮或氧钝化后,在带隙中能够形成几乎相同的局域电子态,这种局域电子态可以俘获来自导带的电子,从而形成亚稳态,这是PL发光增强乃至产生受激辐射的关键因素. 关键词: 硅量子点 PL光谱 发光增强 电子局域态  相似文献   

4.
本文发现很有趣的量子效应,纳米硅表面掺杂氧而形成的电子局域态中电子自旋能级间隔会有明显的展宽,被约束在局域态中的电子自旋±1/2能态间距被展宽两个数量级,达到100 meV左右.本文用纳秒脉冲激光在氧氛围中制备了掺杂氧纳米硅结构并形成电子局域态,在实验检测中探测到了电子自旋能级展宽效应;用第一性原理模拟计算方法研究了电子自旋能级展宽效应,具体地对于纳米硅量子点和量子层结构表面的硅氧双键与硅氧桥键局域态中的电子自旋量子态分别进行了模拟计算研究,证实了实验结果.结合实验与计算研究结果分析,建立起电子自旋能级展宽效应的物理模型.这些工作在量子信息高保真存储与处理上会有很好的应用.  相似文献   

5.
将纳米硅薄膜看成理想的一维限制的量子面结构,通过第一性原理计算研究了不同厚度的硅(111)量子面的能带结构及态密度。随着量子面厚度的变化,在Si—H键钝化较好的量子面结构上,其带隙宽度变化主要遵循量子限制效应规律。当在表面掺杂时,模拟计算表面含Si—N键的硅(111)量子面的结果表明:在一定厚度范围内,带隙宽度主要由量子限制效应决定;超过这个厚度,带隙宽度同时受量子限制效应和表面键合结构的影响。保持量子面厚度不变,表面掺杂浓度越大则带隙变窄效应越明显。同样,模拟计算含Si—Yb键的硅(111)量子面的结果也有同样的效应。几乎所有的模拟计算结果都显示:量子面的能带结构均呈现出准直接带隙特征。  相似文献   

6.
用纳秒强激光脉冲制备了纳米硅和硅表面的硅镱键合结构,检测了纳米硅表面硅镱键合的发光特性,并对这种结构相应的光致发光(PL)和电致发光(EL)的动力学机理进行了研究。观察到纳米硅表面硅镱键合在700nm附近尖锐的强发光峰,结合第一性原理计算认为是硅镱键合在弯曲纳米硅表面的局域态发光;利用纳秒脉冲激光沉积技术(PLD)制备多晶硅薄膜,发现由硅镱界面的失配形成表面的突触,其上的硅镱键合产生带隙中的电子局域态,该局域态发光分布在1250~1650nm波长范围,有增强的EL发光;用PLD方法制备硅镱多层膜量子级联结构,测量到光通信窗口的多个发光峰,并观察到随膜层数增加且发光峰增多。  相似文献   

7.
廖武刚  曾祥斌  国知  曹陈晨  马昆鹏  郑雅娟 《物理学报》2013,62(12):126801-126801
采用等离子体增强化学气相沉积法, 以NH3与SiH4为反应气体, n型单晶硅为衬底, 低温(220 ℃)沉积了富硅氮化硅(SiNx)薄膜. 在N2氛围中, 于500–1100 ℃ 范围内对样品进行了热退火处理. 采用Raman 光谱技术分析了薄膜内硅量子点的结晶情况, 结果表明, 当退火温度低于950 ℃时, 样品的晶化率低于18%, 而当退火温度升为1100 ℃, 晶化率增加至53%, 说明大部分硅量子点都由非晶态转变为晶态. 实验通过Fourier 变换红外吸收(FTIR)光谱检测了样品中各键的键合结构演变, 发现Si–N键和Si–H键随退火温度升高向高波数方向移动, 说明了薄膜内近化学计量比的氮化硅逐渐形成. 实验还通过光致发光(PL)光谱分析了各样品的发光特性, 发现各样品中均有5个发光峰, 讨论了它们的发光来源, 结合Raman光谱与FTIR光谱表明波长位于500–560 nm的绿光来源于硅量子点, 其他峰则来源于薄膜内的缺陷态. 研究了硅量子点的分布和尺寸对发光带移动的影响, 并根据PL峰位计算了硅量子点的尺寸, 其大小为1.6–3 nm, 具有良好的限域效应. 这些结果有助于制备尺寸不同的硅量子点和基于硅量子点光电器件的实现. 关键词: 硅量子点 氮化硅薄膜 光致发光 Fourier 变换红外吸收  相似文献   

8.
多孔硅量子点中的电子局域态   总被引:1,自引:0,他引:1       下载免费PDF全文
经过激光辐照和高温退火加工能够生成多孔硅样品,在650—780 nm处检测到很强的光致荧光(PL)峰,并且有明显的钉扎和增强效应.实验表明,这种PL发光的强度与样品受辐照和退火的时间短密切相关.通过第一性原理模拟计算发现,样品表面用SiO 双键和Si—O—Si桥键钝化,能隙中会出现电子局域态.激光辐照和高温退火的时间长短决定了样品表面SiO双键和Si—O—Si桥键的密度,而该密度正是影响多孔硅量子点中电子局域态生成的关键. 关键词: 多孔硅量子点 硅氧钝化键 电子局域态  相似文献   

9.
密度泛函理论计算结果和X射线光电子能谱测量数据之间的一致性证实了碱金属低配位引起局部键弛豫和芯能级偏移,进而决定了材料的表面、尺寸和热性能. 局域光电子能谱分析方法和键弛豫理论可用于计算有关金属表面键合和电子性质的参数,从而进一步研究碱金属中芯-电子结合能偏移. 同时,结合第一性原理,还可以获得碱金属表面低配位原子的键参数和原子内聚能. 此外,尺寸和温度对表面电子结合能的影响可以从原子键弛豫引起的哈密顿量中导出.  相似文献   

10.
密度泛函理论计算结果和X射线光电子能谱测量数据之间的一致性证实了碱金属低配位引起局部键弛豫和芯能级偏移,进而决定了材料的表面、尺寸和热性能.局域光电子能谱分析方法和键弛豫理论可用于计算有关金属表面键合和电子性质的参数,从而进一步研究碱金属中芯-电子结合能偏移.同时,结合第一性原理,还可以获得碱金属表面低配位原子的键参数和原子内聚能.此外,尺寸和温度对表面电子结合能的影响可以从原子键弛豫引起的哈密顿量中导出.  相似文献   

11.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   

12.
黄伟其  陈汉琼  苏琴  刘世荣  秦朝建 《中国物理 B》2012,21(6):64209-064209
A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.  相似文献   

13.
The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs. From this point of view, we can build up radiative matter for emission. Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots. Our experimental results demonstrate that annealing is important in the treatment of the activation, and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.  相似文献   

14.
In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal used to select model can produce a sharp peak at 2.076 eV in the nano-laser. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.  相似文献   

15.
Samples of borosilicate glasses doped by CdS with concentrations smaller than 1% are studied. It is shown that, due to a disorder at interfaces of quantum dots, the main channels of emission of excitons by quantum dots are the annihilation of excitons in quantum and localized surface states, while the efficiency of interaction between the channels largely depends on the radius of quantum dots. It is found for the first time that states that form the second emission channel are not discrete energy levels in the band gap, as is usually assumed in some experimental and theoretical works, but rather form a quasi-continuous tail of the density of localized states. These localized states appear as a result of dangling bonds of outer atoms of quantum dots. Energy relaxation of carriers via localized states is the reason for a long response time of these structures to an external action and can be enhanced due to a polarization effect caused by different dielectric constants of materials of quantum dots and matrix.  相似文献   

16.
A new conception of nano-laser is proposed in which depending on the size of nano-clusters (silicon quantum dots (QD)), the pumping level of laser can be tuned by the quantum confinement (QC) effect, and the population inversion can be formed between the valence band and the localized states in gap produced from the surface bonds of nano-clusters. Here we report the experimental demonstration of nano-laser on silicon quantum dots fabricated by nanosecond pulse laser. The peaks of stimulated emission are observed at 605 nm and 693 nm. Through the micro-cavity of nano-laser, a full width at half maximum of the peak at 693 nm can reach to 0.5 nm. The theoretical model and the experimental results indicate that it is a necessary condition for setting up nano-laser that the smaller size of QD (d < 3 nm) can make the localized states into band gap. The emission energy of nano-laser will be limited in the range of 1.7-2.3 eV generally due to the position of the localized states in gap, which is in good agreement between the experiments and the theory.  相似文献   

17.
在本文中我们首次报道了p型掺杂的自组织Si/Ge量子点中空穴能级子带间的电子拉曼散射,此电子跃迁的能量为105meV。Si/Ge量子点Ge Ge模的共振拉曼散射表明此空穴能级间的电子拉曼散射与Γ点附近的E0(≈2.52eV)发生了共振,而E1的能量小于2.3eV.变温实验和偏振实验进一步证实了我们的指认。所有观测的实验数据与6 bandk·p能带结构理论的计算结果吻合得很好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号