首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《中国物理 B》2021,30(9):95206-095206
A detailed understanding of anode heat transfer is important for the optimization of arc processing technology. In this paper, a two-temperature chemical non-equilibrium model considering the collisionless space charge sheath is developed to investigate the anode heat transfer of nitrogen free-burning arc. The temperature, total heat flux and different heat flux components are analyzed in detail under different arc currents and anode materials. It is found that the arc current can affect the parameter distributions of anode region by changing plasma characteristics in arc column. As the arc current increases from 100 A to 200 A, the total anode heat flux increases, however, the maximum electron condensation heat flux decreases due to the arc expansion. The anode materials have a significant effect on the temperature and heat flux distributions in the anode region. The total heat flux on thoriated tungsten anode is lower than that on copper anode, while the maximum temperature is higher. The power transferred to thoriated tungsten anode, ranked in descending order, is heat flux from heavy-species, electron condensation heat, heat flux from electrons and ion recombination heat. However, the electron condensation heat makes the largest contribution for power transferred to copper anode.  相似文献   

2.
The properties of the ion flux generated in a vacuum arc are reviewed. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of the total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, although some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of the solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory and the gas dynamic theory. Experimental data indicate that these theories serve reasonably well when used to predict the mean values of the charge state, ion potential, and ion energies for the ion flux, but are quite insufficient when compared with the results for the potentials and energies of individual ions  相似文献   

3.
This paper reviews the properties of the cathode ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, though some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply-charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages, but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory (PH), which assumes that all ions are created at the same potential, and the gas dynamic theory (GD), which assumes that all ions are created with the same flow velocity. Experimental data on the potentials and energies of individual ions indicates that these theories in their original forms are not quite correct, however extensions or modifications of the PH and GD theories seem very likely to be able to predict correct values for the charge states, potentials, and energies of individual ions.  相似文献   

4.
An intense pulsed ion beam of metal was extracted from a magnetically insulated ion diode operated in a mode of plasma prefill generated from a vacuum arc discharge, anode plasma source. With this ion diode, an intense metal-ion beam of a high melting-point metal (Ta) was obtained. A variety of operational modes appeared, depending on the amount of plasma in the diode gap at the initiation of the high-voltage pulse. The energy, current, and duration time of the ion beam were 20~100 keV, ~1 kA, and 1 μs, respectively. Measurements of ions were performed with an ion energy analyzer or a biased ion collector located at the end of a long drift tube and a Thomson parabola ion spectrometer. The Ta ions in the first to fifth states of ionization were detected accompanied by C+, O+, F+, and H+ . A Ta ion beam current of about half the total ion flux was obtained in this experiment  相似文献   

5.
The ion behavior phenomenon associated with transitions of the anode discharge mode to the anode-spot mode is studied by measuring the wall ion current and by spectroscopic observation in vacuum arcs. The anode mode transfers when the wall ion current attains a certain magnitude that is independent of the cathode, but dependent on the anode. The ion-current function to the arc current increases when the arc current increases in the diffuse arc. Spectral-line intensity of Cu III emitted from the plasma in the anode region increases with an instantaneous arc current of a 5-kA peak (kAp) sinusoidal half-wave. These findings suggest an idea for the mode transition, that an ion generation region appears, and that an increase in the ion density produces a positive potential hump near the anode, which results in the negative anode voltage drop triggering the mode transition. After the mode transition, an arc current is found to reduce the ion current near the crest of a sinusoidal current in a copper arc. This appears to be significant for the arc on a small anode. The decrease in the ion current is attributed to the recombination of ions decelerated by anode vapor with electrons emitted from the hot spot on the anode  相似文献   

6.
This paper studies the anode region of an eroding anode with a nonstationary arc-root attachment. High-current free-burning short as well as long arcs at atmospheric pressure are investigated. A technique to study the anode region of the arc is suggested. An anode moving perpendicular to the arc axis was used for estimating parameters of the anode jets at a given moment of their development. The mechanism of current transfer in the anode region is considered on the basis of electrophysical and optical-spectroscopic investigations of the arc attachment traces and plasma parameters both of the anode jet and arc column. The anode jet was found to be of importance in the stationary arc operation. The near-anode plasma parameters depend on the effect of the cathode jet. In short arcs (La~2 mm), the plasma temperature at the anode exceeds 20000 K, while in long arcs (La >50 mm), it falls below 7000 K. At plasma temperature Ta >11000 K, the total arc current in the anode region is transferred through the arc plasma, while at lower temperatures, both the arc column and the anode jet take part in the current transfer  相似文献   

7.
The distribution of the peak temperature and energy flux on the surface of a steel anode in a pulsed high-current vacuum arc was determined by studying the spatial location of the borderline separating the region of hardened steel, produced by the pulse of energy flux to the anode, and the region of the anode which did not undergo a phase transition. The arc was run between a 14-mm-diameter stainless steel cathode and a 25-mm 4340 steel anode, separated by a 4-mm gap, with peak currents up to 1000 A and 71 ms full-width half-amplitude (FWHA) duration. The phase transition of the steel occurs at 727°C and the above-mentioned borderline is thus the geometrical location of all points which reached a peak temperature of 727°C. The peak anode surface temperature was calculated from the borderline position by approximate solution of the three-dimensional heat conduction equation. The effect of an axial magnetic field on the anode surface temperature and energy flux distribution was also studied showing that with no magnetic field the distribution had a pronounced maximum on the axis of the arc, while with the presence of a magnetic field the distribution became annular with a maximum at about mid-radius. In comparison, the shape of the distribution of the cathode mass deposited by the arc on the anode was uniform without a magnetic field. The peak of the anode temperature and the energy flux amplitude also depended on the magnetic field, first decreasing and then increasing almost linearly with it.  相似文献   

8.
A model is proposed for the multicathode-spot (MCS) vacuum arc. A zero-order model is filrst constructed, whereby the interelectrode plasma is produced by the multitude of cathode spots, and flows to the anode upon which it condenses. The electron density is calculated by assuming that the plasma is uniform within a cylinder bounded by the electrodes and using expenmental data for the ionic velocities and ion current fraction obtained in single cathode spot arcs. The electron density thus obtained is proportionate to the current density, and is equal to 5 × 1020 m-3 in the case of a 107-A/m2 Cu arc. The model predictions are a factor of 3-4 lower than measured values. First-order perturbations to the zero-order model are considered taking into account inelastic electron-ion collisions, plasma-macroparticle interactions, the interaction of the self-magnetic field with the plasma and electric current flows, and the interaction with the anode. Inelastic collisions tend to increase the ionicity of the plasma as a function of distance from the cathode, in agreement with spectroscopic observations. Macroparticles are heated by ion impact until they have significant evaporation rates. The vapor thus produced is ultimately ionized, and most probably accounts for the discrepancy between the zero-order prediction of electron densities and the measured values. Constrictions near the anode in both the plasma and electric current flows have been calculated. An overabundant electron current supply forces the anode to assume a negative potential with respect to the adjacent plasma.  相似文献   

9.
The stepwise increase of the burning voltage of short break arcs has been found not only in a gas but also in vacuum. It is suggested that the effect is associated with the occurrence of a positive anode fall which enhances ionisation phenomena near the anode. This view is supported by the simultaneous registration of arc current, burning voltage, light emission from the anode region, of spectral lines of ions, atoms and continuum from the near anode plasma. The phenomena occur beyond a critical gap distance which can be related to the characteristic geometry of the discharge.  相似文献   

10.
The interaction between the arc and the anode was experimentally studied by means of a transferred arc burning in argon with copper, iron, or steel anodes. Depending on the rate of anode cooling, a stable plasma was obtained just above the anode, established either in pure argon (strong cooling) or in a mixture of argon with metal vapor. Temperature and metal concentration fields were deduced from spectroscopic measurements. Two important results were reached: the arc radius near the anode depends on the nature of the electrode, even without anode erosion; and the presence of metal vapor leads to a cooling of the plasma. The same arc configurations were theoretically simulated by a two-dimensional model. The comparison between experimental and numerical results allows a large proportion of the observed phenomena to be interpreted, in spite of partial discrepancies between predicted and measured values. The dimension of the arc root at the anode depends on the thermal conductivity of the solid metal, whereas the cooling effect due to metal vapor in the plasma is explained by the increases of electrical conductivity and of radiative losses in the presence of the vapor  相似文献   

11.
A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonmonotonic. It is supposed that the ion current at the cathode is generated within the cathode potential fall region due to the ionization of the evaporated atoms by the plasma thermal electrons having Boltzmann's energy distribution. The model offers a satisfactory explanation for the principal regularities of a hot-cathode vacuum arc with diffuse attachment of the current. The applicability of the model proposed to the explanation of some processes occurring in a vacuum arc, such as the flow of fast ions toward the anode, the current cutoffs and voltage bursts, and the backward motion of a cathode spot in a transverse magnetic field is discussed  相似文献   

12.
The dependence of the anode fall voltage of freely burning high pressure arcs was investigated on the basis of a simplified arc model. It was found that the anode fall voltage does not contribute to the observed increase of arc voltage with pressure. The analysis was based on experimental investigations carried out with an argon arc. Due to the self-magneticly produced plasma flow a stagnation point flow pattern developed at the anode. The experiments were conducted at currents of I = 100 A and I = 150 A. The pressure was varied between p = 1 atm and p = 50 atm. The applied method necessitated the determination of the anode energy balance. As a side result of the investigation it was found that radiation contributes at p = 1 atm with appr. 20% and at p = 50 atm with appr. 50% to the total arc energy balance.  相似文献   

13.
An anode heat flux model has been developed for pulsed high-intensity dc arcs. The model is based on temperature-time-history measurements of the rear face of a very thin plane anode and high-speed streak photographs of the arc. The arc heat flux model is derived from a comparison of experimental data with an analytical solution of the one-dimensional heat conduction equation and the arc intensity and timing information obtained from high-speed photographs. A simplified input heat flux model consisting of connected segments of linearly varying heat fluxes with respect to time is used. Duration of the individual segments is determined from the streak photographs and the graphical match of measured rear-face temperature history and the numerical solution. Results using argon gas at atmospheric pressure indicate an initial transient heat flux regime of 100-?s duration with a peak heat flux of 2 × 109 W/m2 followed by a quasi-steady heat flux regime with a heat flux of 1 × 108 W/m2.  相似文献   

14.
This paper summarizes recent experimental data related to anode phenomena in both vacuum and atmospheric pressure arcs. Currents in the range 10A to 3OkA are discussed, and particular emphasis is placed on the effect of plasma flow from the cathode. For vacuum arcs this plasma flow is the directed motion of metal ions from the cathode spots. These ions reduce the anode voltage drop, and maintain a diffuse anode termination. At atmospheric pressure the ion flow is impeded by gas-atom collisions. However, a plasma flow towards the anode can result from magnetic pinch forces at the constricted cathode termination. In the absence of plasma flow, the anode termination constricts to a vigorously evaporating anode spot. For a typical non-refractory electrode such as copper, the spot operates at a temperature close to the boiling point irrespective of the gas pressure. The spot temperature is dictated by the balance between electrical input power and evaporative losses. These anode phenomena are discussed in relation to vacuum switchgear, arc welding and arc furnaces.  相似文献   

15.
通过电弧模型与熔池模型耦合数值模拟,研究了氩弧和氦弧特性及其对SUS304不锈钢钨极惰性气体保护(TIG)焊熔池形貌的影响.通过比较氩弧和氦弧的温度轮廓线以及阳极表面电流密度和热流密度分布发现,氦弧的径向距离比氩弧收缩明显,导致更多热量传递给阳极.模拟了氩弧和氦弧下浮力、电磁力、表面张力和气体剪切力分别对熔池形貌的影响.结果表明:不论是在氩弧还是在氦弧下熔池中表面张力是影响熔池形貌的最主要驱动力.在氩弧下,影响熔池形貌的另一个重要的驱动力是气体剪切力,而氦弧下则是电磁力.由于电磁力引起的内对流运动增加了熔深,从而导致相同氧含量时氦弧下的熔深和焊缝深宽比要高于氩弧下的熔深和焊缝深宽比.随着氧含量的增加,氩弧和氦弧下的焊缝深宽比均先增加而后保持不变.焊缝深宽比的模拟结果与实验结果符合较好. 关键词: 氩弧 氦弧 电弧特性 熔池形貌  相似文献   

16.
Anode power deposition is a dominant power loss mechanism for arcjets and magnetoplasmadynamic (MPD) thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arcjets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa and then became insensitive to pressure. Anode power increased with increasing arc current, while the electron number density near the anode surface increased linearly. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied-field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the kinetic energy of the current-carrying electrons acquired over the anode fall region. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, anode current densities, and applied magnetic field strengths, and with magnetic field lines intercepting the anode  相似文献   

17.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode arc investigated. The arc voltage Va is measured with a fixed arc current for an anode diameter of 40 mm. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc when the anode hole diameter is 40 mm. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field  相似文献   

18.
A two-dimensional, two-temperature axisymmetric numerical model has been formulated for the flow-affected region and the boundary layer in front of high-intensity electric arc anodes. The plasma flow is laminar, steady, incompressible, and the plasma composition is found from the diffusion equation because chemical nonequilibrium is expected. Computational results are obtained for an atmospheric pressure argon arc considering two different situations: a free-burning electric arc and an arc with a constrictor tube. The solutions indicate two different anode attachments modes-a constricted and a diffuse attachment. It is found that under the conditions considered in the calculations, the gradient-induced current densities become significant at distances in the order of 1 mm from the anode surface. The thermal anode boundary layer is compressed with increasing current. The thickness of the thermal boundary layer for the constricted mode is approximately three times smaller than for the diffuse mode. A reversal of the electric field strength occurs over the entire thickness of the boundary layer in all calculated cases. A satisfactory agreement is reached between the calculated heat flux values and experimental results obtained for a 200-A free-burning electric arc  相似文献   

19.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode are investigated. The arc voltage Va is measured with a fixed arc current. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field.  相似文献   

20.
This paper briefly reviews anode phenomena in vacuum arcs, specially experimental work. It discusses, in succession, arc modes at the anode, anode temperature measurements, anode ions, transitions of the arc into various modes (principally the anode spot mode), and theoretical explanations of anode phenomena. The two most common anode modes in a vacuum arc are a low current mode where the anode is basically passive, acting only as a collector of particles emitted from the cathode, and a high current mode with a fully developed anode spot. Characteristically this anode spot has a temperature near the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material may emit a flux of sputtered atoms from the anode. Usually this sputtered flux will have little effect upon the vacuum arc, but in certain circumstances it could be significant. A vacuum arc doesn't always transfer directly from a low current mode to the anode spot mode. In appropriate experimental conditions, formation of an anode spot may be preceded by the formation of an anode footpoint. This footpoint is luminous, but much cooler than a true anode spot. Finally, (again in appropriate circumstances) several small anode spots may form instead of one large anode spot. With sufficient increase in arc current or arcing time these will usually combine to form a single large active spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号