首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode are investigated. The arc voltage Va is measured with a fixed arc current. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field.  相似文献   

2.
This paper presents experimental results of currents collected on the three-element condensation shield connected to the cathode potential in high-current vacuum arcs. The arc current had 900 Hz, 150 Hz, or 50 Hz half-cycle sinusoidal shapes and was conducted between the CuCr40 contacts with a diameter of 50 mm (cathode) and 30 mm (anode) spaced 10 mm apart. Most of the measurements were made for the current of 900 Hz with peak values up to 9 kA. Arc voltage, floating shield potential, and distribution of shield currents were measured. It was found that the current collected by the shield and also the arc voltage and floating shield potential are greater for higher frequency currents, and that they are affected by the arc mode. Considerable shield current is observed during a high-amplitude (HA) oscillation sequence of arc voltage while its mean value is increased. For 900-Hz arcs at the 9-kA peak value (Iam), the ratio of shield current (is) to an instantaneous value of arc current (ia) reaches even 40% near Iam value. In the initial half-cycle period (before the initiation of high-voltage oscillation), the ratio of is/ia increases with ia and current frequency. A close relationship was found between arc voltage and current distribution on a three-element shield  相似文献   

3.
The plasma jet focusing and voltage distribution in the interelectrode gap of a vacuum arc with a ring anode and subjected to an axial magnetic field were studied theoretically. A two-dimensional model was developed based on the free plasma jet expansion into vacuum, and the steady-state solution of the fully ionized plasma in the hydrodynamic approximation was analyzed. It was found that the imposition of an axial magnetic field reduces the radial expansion of the plasma jet. The characteristic jet angle decreases from about 40° in the zero magnetic field case and approaches a value of about 20° with a 0.02 T magnetic field. The arc voltage consisting of the cathode drop, the plasma voltage drop, and anode sheath drop increased, with the imposition of a magnetic field, and decreased with the anode length. The model was compared to experimental measurements of the vacuum arc voltage behavior in an axial magnetic field, and good agreement was found  相似文献   

4.
Stationary plasma discharges have been investigated in a high vacuum ambient (background gas pressure <10-2 Pa), with an externally heated cathode and a consumable hot evaporating anode. With various anode materials like chromium or copper, and electrode separations between 0.5 and 3 mm, the nonself-sustained discharge operates with DC arc currents in the range of 220 A. The waveform of the arc voltage is strongly influenced by the magnetic field of the cathode heating current, and arc voltages between a minimum of 3 V and a maximum exceeding 100 V have been observed. The voltage-current characteristics (VCC) and the influence of the electrode separation have been measured separately for the minimum and the maximum of the arc voltages and show a different behavior. The metal plasma expands into the ambient vacuum toward the walls of the vacuum vessel and offers a macroparticle free deposition source of thin films. The arc voltage can be varied by external manipulations of the arc discharge, and the mean ion energy of the expanding metal plasma shows a linear dependence of the mean arc voltage  相似文献   

5.
The basic characteristics of the nonself-sustained arc discharge in a vapor of the anode material are studied. The influence of thermoemission parameters of the cathode on volt-ampere characteristics of the discharge is described. It is established that in a free mode of the discharge cathode operation, when the discharge current ID is lower than the current of the thermoelectron emission from the discharge cathode IC, the deposition rate of the films q is directly proportional to the discharge current ID. In the compelled mode of the cathode operation, when ID>I C, q~WD2, where WD=ID UD with UD being the discharge voltage. It is shown that the magnetic field increases the plasma density and changes the density profile from n(x)-1/x2 to n(x)-1/x with x being a distance along the flow. The motion of created plasma flow is shown to have a noncollisional character with constant electron temperature of 5-7 eV along the flow. The values of plasma potential and electric field in the flow are determined; the values of cathodic and anodic potential drops in the discharge are evaluated. The angular distributions of ion and neutral fluxes in the created plasma flow are described. It is shown that the plasma flows parameters depend substantially on the working material. With use of crossed electric and magnetic fields, the flow ionization coefficient was enhanced up to 85% for the discharge in Ti vapors, and 35% for the discharge in Cu vapors  相似文献   

6.
The anodic and cathodic arc roots of constricted high current vacuum arcs were investigated with a fast framing charge-coupled device camera of 1 μs exposure time. The experiments were performed with cup-shaped contacts, with sinusoidal currents of amplitudes between 20 and 100 kA, and a sine halfwave duration of 10-12 ms. The arcs were drawn by contact separation and accelerated by the Lorentz force between the arc current and the transverse magnetic field generated by the contrate contact. The anode and cathode arc roots behave reproducibility and arc scaleable within the range of currents investigated. Both types of arc roots are elliptical, with a major to minor axis ratio of 1.4. The major axis points are in the direction of arc propagation. Anodic and cathodic arc root cross-sectional areas as a function of current can both be described by a potential law with a common exponent of 0.76. For currents of 20-100 kA, mean current densities of 81-121 and 41-60 kA/cm 2 were found in anode and cathode arc roots, respectively. Estimations of their temperature and vapor densities were performed. For the investigated current range TA≈3300-3600 K, nA ≈1.6*1019-2.2*1019cm-3 and T C≈3200-3400 K, nC≈0.8*1019-1.2*10 19 cm-3 were found for anode and cathode, respectively  相似文献   

7.
The ion current distribution emerging from a vacuum arc between a Cu cathode and a conical ring anode was measured by a set of five probes. It was found that: (1) the total ion current emerging through the anode was 8.5% of the arc current; (2) the measured ion distribution without a magnetic field was a slightly flattened cosinusoidal function; (3) with an axial magnetic field, the ion current distribution became peaked along the z axis; (4) the total ion current extracted through the anode aperture slightly increased with the magnetic field; and (5) an anode with a larger aperture exhibited less magnetic collimation  相似文献   

8.
We have investigated the surface heating effects of drawn vacuum arcs for several industrial designs of axial magnetic field (AMF) contacts, using near infrared (IR) photography of the Cu-Cr arcing surfaces with an image-intensified charge-coupled device (CCD) camera and an IR pyrometer. This enables detailed contact temperature mapping immediately after a half-cycle of arc current. The very homogeneous temperature distribution observed at current zero stands in contrast to the visually nonhomogeneous high-current diffuse arc, which was studied in separately reported experiments using high-speed digital photography and arc voltage measurements. The peak temperature at current zero increased relatively linearly with the peak current IP, and reached well beyond the melting range. We combine the temperature maps with a heating model to determine the thermal sheath thickness after arcing and its dependence on IP. The results suggest that near the interruption limit of AMF contacts, the interaction of the stable high-current arc with the anode and cathode is dominated by processes induced by flowing liquid metal, which redistributes the heat input from the axially concentrated arc over most of the contact surface. Furthermore, the flow of liquid metal off the cathode and anode faces contributes to the overall contact erosion  相似文献   

9.
磁等离子体动力学推力器是空间高功率电推进装置的典型代表,磁等离子体动力学过程是其核心工作机制.为深入理解外磁场对其工作特性的影响,本文采用粒子云(particle in cell,PIC)方法结合基于自相似准则的缩比模型,进行外加磁场作用下磁等离子体动力学推力器工作过程的建模仿真,通过与实验结果对比验证模型和方法的可靠性,并重点分析推力器点火启动过程的等离子特性参数分布,以及外磁场和阴极电流对推力器工作性能的影响.研究结果表明:阴阳极放电电弧构建是推力器启动和高效工作的关键步骤;外磁场强度较低工况不利于构建稳定放电电弧,等离子体束流集中于轴线附近,推力主要产生机制是自身场加速;外磁场强度较高时,阴阳极放电电弧稳定,推力产生主要机制是涡旋加速,推力、比冲随外磁场强度线性增大;推力器效率随阴极电流和外磁场强度增大而增大;放电电压随阴极电流增大而增大,但随外磁场强度的增大表现出先减小后增大的趋势.  相似文献   

10.
磁等离子体动力学推力器是空间高功率电推进装置的典型代表,磁等离子体动力学过程是其核心工作机制.为深入理解外磁场对其工作特性的影响,本文采用粒子云(particle in cell,PIC)方法结合基于自相似准则的缩比模型,进行外加磁场作用下磁等离子体动力学推力器工作过程的建模仿真,通过与实验结果对比验证模型和方法的可靠性,并重点分析推力器点火启动过程的等离子特性参数分布,以及外磁场和阴极电流对推力器工作性能的影响.研究结果表明:阴阳极放电电弧构建是推力器启动和高效工作的关键步骤;外磁场强度较低工况不利于构建稳定放电电弧,等离子体束流集中于轴线附近,推力主要产生机制是自身场加速;外磁场强度较高时,阴阳极放电电弧稳定,推力产生主要机制是涡旋加速,推力、比冲随外磁场强度线性增大;推力器效率随阴极电流和外磁场强度增大而增大;放电电压随阴极电流增大而增大,但随外磁场强度的增大表现出先减小后增大的趋势.  相似文献   

11.
The generation of a 250-μs-wide electron beam in a plasma-emitter diode is studied experimentally. A plasma was produced by a pulsed arc discharge in hydrogen. The electron beam is extracted from a circular emission hole 3.8 mm in diameter under open plasma boundary conditions. The beam accelerated in the diode gap enters into a drift space in the absence of an external magnetic field through a hole 4.1 mm in diameter made in the anode. The influence of electron current deposition at the edge of the anode hole on the beam’s maximum attainable current, above which the diode gap breaks down, is studied for different accelerating voltages and diode gaps. The role of processes occurring on the surface of the electrodes is shown. For an accelerating voltage of 32 kV, a mean emission current density of 130 A/cm2 is achieved. The respective mean strength of the electric field in the acceleration gap is 140 kV/cm. Using the POISSON-2 software package, the numerical simulation of the diode performance is carried out and the shape of steady plasma emission boundaries in the cathode and anode holes is calculated. The influence of the density of the ion current from the anode plasma surface on the maximum attainable current of the electron beam is demonstrated.  相似文献   

12.
The total amount of plasma, peak plasma density, and plasma density radial profile are derived from a series of measurements of ion current density (with a Faraday cup) and integrated electron line density (with a microwave interferometer) for a cathodic arc derived plasma. Comparisons are made between cathode material (erbium and titanium), arc current, background gas pressure, and the presence or absence of a series magnetic solenoid around the coaxial anode and cathode  相似文献   

13.
The distribution of the peak temperature and energy flux on the surface of a steel anode in a pulsed high-current vacuum arc was determined by studying the spatial location of the borderline separating the region of hardened steel, produced by the pulse of energy flux to the anode, and the region of the anode which did not undergo a phase transition. The arc was run between a 14-mm-diameter stainless steel cathode and a 25-mm 4340 steel anode, separated by a 4-mm gap, with peak currents up to 1000 A and 71 ms full-width half-amplitude (FWHA) duration. The phase transition of the steel occurs at 727°C and the above-mentioned borderline is thus the geometrical location of all points which reached a peak temperature of 727°C. The peak anode surface temperature was calculated from the borderline position by approximate solution of the three-dimensional heat conduction equation. The effect of an axial magnetic field on the anode surface temperature and energy flux distribution was also studied showing that with no magnetic field the distribution had a pronounced maximum on the axis of the arc, while with the presence of a magnetic field the distribution became annular with a maximum at about mid-radius. In comparison, the shape of the distribution of the cathode mass deposited by the arc on the anode was uniform without a magnetic field. The peak of the anode temperature and the energy flux amplitude also depended on the magnetic field, first decreasing and then increasing almost linearly with it.  相似文献   

14.
The ion current collected by a probe biased at the cathode potential and located behind an annular anode of a vacuum arc is measured as a function of distance to the cathode and background argon pressure. The arc is formed between a circular Cu cathode and an annular anode. Arc current is 170 A, and the arc duration is 0.9 s. The arc is ignited by momentary contact of a movable W trigger rod (held at anode potential) with the cathode. Arc voltage, arc current, and ion current are measured using an analog data acquisition card and a personal computer. Arc voltage and arc current values are stable during the arc and their normalized standard deviation is less than 0.07. Ion current is noisy and fluctuates during the arc with a normalized standard deviation that varies from 0.5 at p<0.1 torr up to more than 1.5 at p>1 torr  相似文献   

15.
Measurement and magnetic analysis of self-extracted negatively charged carriers (NCCs) from anodic vacuum arcs are presented. They flow to charge collectors made of stainless steel, which are electrically connected to a cathode. When a 60-Hz sinusoidal arc current of 40 kA is burned on 20-mm-diameter copper electrodes spaced 4 mm apart, a negative current of approximately 900 A flows to a cylindrical collector surrounding the arc. The floating collector potential relative to the cathode is measured, and the mean energy of the NCCs is estimated to be greater than 40 eV. It is difficult for the NCCs to flow from anodic vacuum arcs when an anode is made of zinc or cadmium, the atoms of which have electron affinities of less than 0 eV. A magnetic filter of about 500 G, which is placed between the arc and a 30-mm-diameter circular collector, does not affect the NCC's flow from a 4-kA arc burned on copper electrodes. It is possible to extract a large amount of negative copper ions from the anodic copper vacuum arcs  相似文献   

16.
The influence of variously oriented uniform magnetic fields on the cathodic attachment of a low-current vacuum arc with electrodes made of oxygen-free copper and CuCr30 composition is studied. It is found that, if the current is fixed, cathode spots in the arc attachment are distributed by the normal law in the entire range of variation of the amplitude of magnetic induction vector B and angle α between this vector and the normal to the cathode surface. The parameters of the distribution depend on the magnetic field and cathode material. The magnetic field dependence is appreciable only when angle α exceeds some critical value α* (α* ≈ 30° and ≈45° for cathodes made of copper and CuCr30, respectively). At α > α*, the parameters of the distribution become strongly dependent on α, while the B dependence remains weak. Only when α → π/2 does the field amplitude have a pronounced effect on the parameters of the distribution. From the obtained results, we determine the statistical characteristics of the distribution of the mean current transmitted by a cathode spot in variously oriented magnetic fields. The found relationships make it possible to explain the peculiarities of the structure of the cathodic attachment of the high-current vacuum arc stabilized by an external axial magnetic field.  相似文献   

17.
This article presents the results of research on the photographic appearance of a highcurrent vacuum arc between butt type copper electrodes a of 30–80 mm diameter and a fixed gap of 10 mm. Current pulses of up to 30 kA peak amplitude at an initial value of (di/dt)0 from 1–10kA/ms and a duration of approximately 14 ms were applied. Arcs were photographed with a high-speed framing camera, mostly at 104 frames/s. A detailed study of discharge modes in phase transition from a high-current diffuse arc to a constricted arc with an anode spot was conducted. Most of the measurements were obtained at a peak current slightly in excess of 10 kA for electrodes of 55 mm diameter. It was found that at peak current exceeding moderately the threshold value of the onset of anode spot formation, the arc is characterized by the following main features: the formation of an anode spot and an anode plasma jet occurs concurrently with a local concentration of cathode spots; the anode spot is, most often, formed on the electrode edge; the coexistence of very varied structures of spots on the cathode; the lack of considerable constriction of the cathode discharge; the pseudo-periodic shrinking and expansion of the area occupied by cathode spots; the existence of a relatively dark space separates the anode plasma jet from the plasma sheath near the cathode surface; the plasma space distribution in the interelectrode gap is non-uniform and non-stationary.This work was supported by State Committee for Scientific Research within the research project No. 3 P40101507.  相似文献   

18.
Melting of the anode surface in a multicathode-spot vacuum arc is expected when the incident energy flux is not balanced. The anodic energy influx is proportional to the arc-current collected by the anode and melting of the anode should be observed when peak arc-current exceeds a critical value. In this work, the critical peak arc-current Ipt was measured, and its dependence on anode and cathode materials was determined. The arc was sustained between two parallel cylindrical electrodes, 14 mm in diameter and spaced 4 mm apart. The almost critically damped current pulse lasted for 30 ms with a 6-ms rise time to peak value. Peak currents were in the range of 500-2300 A. In most of the experiments the anode material differed from that of the cathode. In the runs where the cathode-anode materials were Cu-Al or Mo-Cu, respectively, the time dependence of a spectral line intensity radiated by the anode atoms located in the plasma near the anode surface was recorded. We found that Ipt depended on both the anode and cathode materials. Thus for an Al anode and Al and Cu cathodes, Ipt equaled to 1100 and 900 A, respectively. In arcs with a peak current larger or equal to Ipt, a sudden jump of the spectral line intensity was observed. In all experiments, even when strong melting of the anode was observed, the arc-voltage stayed quiescent and in the range 15-35 V, suggesting that no anode spot was formed.  相似文献   

19.
Vacuum arcs have been studied extensively in the past several decades with applications primarily in the areas of switching, vacuum remelting, and vapor deposition. Application of the vacuum arc for element and isotope separation has been studied recently and is reviewed in this paper. An arc was produced in a 30-cm-diameter 4-m-long cylindrical chamber with coaxially mounted electromagnets providing a 2.6-m-long constant axial magnetic field of up to 6 kG. The vacuum discharge between a solid cathode and a mesh anode was triggered electrically. A pulse-forming network (PFN) of 70-m? impedance provided nearly constant-current discharge pulses of several kiloamps and 6-12-ms duration. The magnetized plasma column, flowing axially from the anode with a typical velocity of 106 cm/s, rotated nearly as a solid body. This rotation was due to the E × B drift, produced by the axial magnetic field and the radial electric field across the column. A typical rotation frequency was 105 rad/s. The centrifugal effect due to the rotation caused a radial redistribution of ions within the plasma column, thereby producing elemental and isotope enrichment. The separation was observed to increase exponentially with the square of the radius. Enrichments of up to 300 percent were measured in a Cu-Zn plasma. The radial plasma density profile was found to be roughly Gaussian, with central electron densities of about 1013 cm-3. The radial potential profile across the column was measured and found to be parabolic with radius.  相似文献   

20.
An arc channel tends to shrink due to its conductivity increasing with the increase of temperature.In this study,to generate large area arc plasma,we construct a magnetically rotating arc plasma generator,which mainly consists of a lanthanide tungsten cathode(13 mm in diameter),a concentric cylindrical graphite anode chamber(60 mm in diameter)and a solenoid coil for producing an axial magnet field.By controlling the cold gas flow,the magnetically rotating arc evolves from constricted mode to diffuse mode,which almost fills the whole arc chamber cross section.Results show that the diffuse arc plasma has better uniformity and stability.The formation mechanism of large area arc plasma is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号