首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
捷联惯导与小视场星体跟踪器构成惯性/天文组合导航系统,导航精度受导航初始误差和器件误差的综合影响。基于此,提出一种捷联惯导与小视场星体跟踪器相组合的初始对准算法,对导航初始姿态误差和惯性器件误差进行估计修正。捷联惯导初始对准过程完成之后,在地面准静基座条件下做速度和位置阻尼条件下的惯导更新解算,利用捷联惯导系统的速度误差量测及小视场星体跟踪器的导航误差角测量量,设计组合粗对准算法和组合精对准算法,用于对捷联惯导系统的初始对准误差和惯性器件误差做进一步有效估计。仿真结果表明:对中等精度导航级捷联惯导系统,组合对准后水平姿态精度可提高到2’’,方位精度可提高到5’’。  相似文献   

2.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

3.
惯性元件参数的长期稳定决定着惯导系统的精度,目前对于激光陀螺捷联惯导系统(RLG-SINS)主要是采用系统级旋转调制技术来实现高精度导航能力,同时系统级旋转也提高了初始对准精度以及惯性元件误差的可观测性。针对激光陀螺惯导系统惯性元件误差项的特点,同时结合分立式标定与系统级标定各自的优势,设计了一种水平阻尼模式下的Kalman滤波方案,利用双轴旋转机构,通过观测导航位置误差来实现初始对准以及部分惯性元件误差参数的标定,可以有效地减小惯性元件逐次启动误差对导航精度的影响。仿真结果表明,系泊状态零速度阻尼模式下工作4 h,可以标定出石英加速度计标度因数误差、零偏与激光陀螺零偏,共计9项误差参数。加速度计零偏估计误差小于2%,陀螺零偏估计误差小于8%,误差估计精度满足高精度惯性导航要求,该方法具备一定的工程实用性。  相似文献   

4.
为了提高惯导系统长时间导航精度,需要在导航阶段对系统进行综校。设计了一种基于方位旋转调制技术的平台式惯导系统一点校方案。方位旋转调制技术可以有效地调制水平惯性敏感元件误差,降低其对系统工作精度的不利影响,这为"一点校"方案的实施提供了前提。分析了方位旋转式平台惯导系统的误差模型,得到了系统误差与误差源之间的解析关系。通过分析研究系统的误差传播特性,建立了方位陀螺漂移与系统位置误差的数学模型,完成了方位旋转式平台惯导系统的"一点校"方案设计,通过系统试验验证其有效性,方位陀螺常值漂移为0.003(°)/h的条件下,经10 h一点校,40 h一点校后,72 h定位误差小于1nmile,航向误差小于1′。  相似文献   

5.
旋转-静止混合对准方案在旋转火箭弹中的应用   总被引:1,自引:0,他引:1  
由于成本考虑,旋转火箭弹捷联惯导系统中使用中低精度陀螺,利用传统的初始对准方法,对准精度难以满足要求。针对旋转火箭弹的特点,提出了一种旋转调制的非线性对准方法,利用该方法,Y轴和Z轴陀螺的随机漂移得到调制,从而提高了对准精度。针对单纯旋转调制对准无法精确估计陀螺漂移的缺点,提出了一种旋转—静态混合对准方案,利用旋转调制的对准结果,在静止段对陀螺漂移进行精确估计。仿真结果表明,由两个精度为0.2(°)/h和一个精度为0.01(°)/h的陀螺组成的捷联惯导系统,在230 s内对准误差小于0.05°,同时可准确估计出三个陀螺的漂移。该方案具有一定的工程实用价值。  相似文献   

6.
旋转式捷联惯导系统精对准方法   总被引:4,自引:0,他引:4  
针对静基座捷联惯导系统初始对准时可观测性差的缺点,提出了捷联式惯导系统四位置转停的单轴旋转方案,以及在此方案下的精对准方法。将陀螺常值漂移和加速度计零位误差调制成周期变量,通过改变惯导系统误差模型中的捷联矩阵改善系统的可观测性。为了使捷联惯导系统的误差方程适合卡尔曼滤波模型,将加速度计误差和陀螺漂移扩充为状态变量,采用卡尔曼滤波方法实现旋转式捷联惯导系统的精对准。仿真结果表明,IMU旋转状态下的对准方法大大提高了系统失准角的可观测性,从而提高了对准精度。  相似文献   

7.
旋转捷联惯导系统可以有效调制惯性器件常值误差,使系统定位精度得到提高。但系统因内部的旋转运动使得惯性器件的输出需要转化,从而增加了器件综合误差解算的复杂性。文中分析了旋转惯导系统的特性,建立了一种新的惯性器件工具误差模型,对捷联惯导系统下的环境函数误差辨识方法提出了改进方案,对惯性器件工具误差进行辨识分离。同时,针对环境函数矩阵求解时样本少、解算精度不高的问题,提出了利用加权最小二乘法对多样本值进行权重匹配分析的方法,提高了器件误差的辨识精度。实验结果表明,零偏估计及分段分离补偿的方法能较好地补偿惯性器件特性误差,有效提高系统的定位精度。  相似文献   

8.
针对飞行器在长航时高速巡航过程中,捷联惯性导航系统存在误差漂移,GPS 导航可能会丢星、信号失锁,天文导航系统易受环境干扰,组合系统模型线性化误差易导致滤波发散等问题,分析了三种导航系统的优缺点,提出了 SINS/GPS/CNS 组合导航联邦滤波算法,该算法可以取长补短,巧妙地将 GPS 定位和天文导航定姿精度高的优势辅助于捷联惯导系统,利用卡尔曼联邦滤波器对捷联惯导系统进行误差估计,并对联邦滤波算法进行了有效的改进.计算机仿真显示,该滤波器收敛速度快,具有一定的容错功能,其滤波精度较 SINS/GPS 组合导航系统在位置误差和速度误差上均有约5%左右的小幅提升,在平台角误差上更是提高了一个数量级.仿真结果验证了该组合导航方案的可行性和算法的有效性,有重要的工程应用价值.  相似文献   

9.
研究了对准误差和惯性敏感器主要误差对制导炸弹捷联惯导位置误差的影响,并从捷联惯导位置导航精度要求反推出对准误差和微机械惯性敏感器工具误差的分配原则和方法.分析了微机械陀螺和微机械加速度计的误差模型,并说明在短时间工作过程中均可简化为零偏叠加随机噪声.捷联惯导系统误差模型研究和弹道仿真表明,水平姿态对准误差和惯性敏感器零偏是制导炸弹惯导误差的主要误差源,用GPS辅助的组合导航可对所有主要误差源的误差进行估计并补偿.根据理论分析和仿真结果,以及误差源的误差和系统导航位置误差存在的正比关系,分析了MINS/GPS制导炸弹捷联导航的误差分配原则和方法,并给出了误差分配样例.  相似文献   

10.
不同轴向的惯性器件误差在惯导系统中的误差传播特性不同,因此在旋转惯导系统中转动机构选择不同转轴方向对系统精度的调制效果不同。分析了在选择不同轴向作为旋转轴时对导航系统精度的影响,并根据转台转轴与机体系、惯性器件(IMU)系之间存在的夹角关系,将其分为两种方案进行讨论,转轴与IMU系存在夹角以及转轴与机体系存在夹角。通过分析,前者在调制效果上与传统的单轴旋转惯导系统相同,而后者会改变调制效果。在此基础上,进一步推导分析了第二种方案下不同转轴方向与系统定位精度之间的内在关系,提出了一种在长时间导航情况下的转轴方向选择方案,并进行了仿真验证。仿真结果表明,与传统单轴旋转惯导系统相比,该方案显著提高了系统的导航定位精度,对在不同情况下转台转轴方向的选择具有一定的工程应用参考价值。  相似文献   

11.
传统的SINS误差模型是基于小姿态误差角假设下的线性化误差模型,由于忽略了高阶项,因而不能精确描述系统的非线性特征,易造成较大的导航估计误差甚至滤波器发散。为了克服SINS线性化误差模型的缺点,建立了基于四元数的SINS/SAR组合导航系统非线性模型,并将自适应UPF滤波算法应用于该组合系统。仿真结果表明,建立的基于四元数的组合导航系统模型,不但能有效减小导航误差,提高导航定位精度,而且具有良好的实时性。  相似文献   

12.
根据星光/惯性组合导航系统舰载使用特点,考虑以SINS、CNS、LOG三者组合,设计组合校准方案。在SINS/CNS/LOG组合过程中,利用惯导系统的短期高精度特性,设计基于水平阻尼的卡尔曼滤波器对惯导舒勒周期进行补偿。星光/惯性组合校准技术建立在水平阻尼基础上,借助星光导航的航向和位置信息完成惯导位置误差、失准角和陀螺漂移的修正,从而实现组合系统长航时、远航程高精度导航。最后通过仿真对比试验验证星光/惯性组合导航系统校准方案的有效性。仿真结果表明:SINS/LOG组合后,惯导24 h位置误差CEP≤1.48 n mile,且位置误差会随时间积累;而SINS/CNS/LOG组合系统采用星光信息24 h一点校方案,第一次和第二次点校后,48 h和72 h惯导位置误差CEP≤0.5 n mile。由此可见,采用星光信息后,该组合方案能够显著提高惯导导航精度,达到延长惯导系统重调周期目的。  相似文献   

13.
为提高水下SINS/DVL组合导航系统的精度,建立了捷联惯性导航系统(SINS)的非线性误差模型,并建立多普勒测速仪的误差方程,以SINS为主导航设备建立SINS/DVL组合导航系统模型。设计了5阶球面最简相径容积卡尔曼滤波器,采用了球面最简相径采样规则改进容积卡尔曼滤波,并应用于SINS/DVL组合导航系统中。通过数学平台仿真验证了5阶球面最简相径容积卡尔曼滤波方法有效性,仿真结果表明:该方法能够有效提高SINS/DVL组合导航系统的精度,且稳定性好。  相似文献   

14.
为了解决大失准角条件下的捷联惯导初始自对准问题,通过分析捷联惯导系统大失准角误差模型,利用平台惯导系统罗经对准原理,提出了一种新的捷联惯导系统罗经对准方案。该方案的具体实现划分为三个阶段:方位角未知情况下的水平对准;大失准角时变参数罗经方位对准;定参数罗经对准。该方案通过实时调节罗经参数缩短了对准时间;利用大方位失准角模型代替小失准角模型,在算法收敛阶段更加准确地描述了捷联惯导系统的误差传递方式。仿真试验表明,使用陀螺随机漂移稳定性为0.01(°)/h的捷联惯导系统,该对准方案能在60 s内方位精度到达1°,并能在对准结束时达到3’的方位对准精度。  相似文献   

15.
由惯性导航系统(SINS)和卫星导航系统(GPS)构成的组合导航系统一直是陆用车辆的主要导航设备。当GPS失锁时,SINS的定位误差将随着时间不受控制的迅速增长。为了提高惯导系统的定位精度,相比较于单一的神经网络,集成学习算法中的Bagging模型能够深度学习惯导误差之间的内在关系,进一步提高导航性能。在智能算法和组合导航系统的框架下提出了惯导系统的误差抑制方案,即在GPS存在时训练组合导航系统数据,当GPS失锁时预测惯导系统位置增量。试验结果表明,该方案能够在GPS丢失时抑制惯导系统定位误差发散,相比较于BP算法,Bagging模型的定位精度在5 min时提高了约49%,15 min时提高了约41%。  相似文献   

16.
由于北斗卫星所处轨道远离地球,无源北斗接收机输出伪距的误差较大,影响了与惯导进行伪距组合时的滤波定位效果。考虑到无源北斗伪距误差建模复杂,且Kalman滤波要求误差模型准确,作者研究了采用单机伪距差分的方法减少滤波量测值误差,通过理论分析建立了基于伪距差分的三星无源北斗/SINS组合模型。跑车试验表明,该组合导航算法可有效提高系统的定位精度,并具有滤波参数调整简单的优点。  相似文献   

17.
单目视觉里程计/惯性组合导航算法   总被引:1,自引:0,他引:1  
提出一种单目视觉里程计/捷联惯性组合导航定位算法.与视觉里程计估计相机姿态不同,惯导系统连续提供相机拍摄时刻对应的三维姿态,克服了单纯由视觉估计相机姿态精度低造成的长距离导航误差大的问题.通过配准和时间同步,用惯导系统解算的速度和视觉里程计计算的速度之差作为组合导航的观测量,采用Kalman滤波修正组合导航系统的误差,同时估计视觉里程计标度因数误差.分别在室内外不同环境下进行了22 m的推车实验和1412m的跑车实验,定位误差分别为3.2%和4.0%.与Clark采用姿态传感器定期更新相机姿态估计结果的方法相比,单目视觉里程计/惯性组合导航定位精度更高,定位误差随距离增长率低,适合步行机器人或轮式移动机器人在复杂地形环境下车轮严重打滑时的自主定位导航.  相似文献   

18.
旋转调制技术在调制惯性器件常值误差,有效提高惯导系统长航时导航精度的同时,也引入了由系统旋转而造成的速度误差以旋转周期和旋转周期二倍频波动,这种波动对以速度为匹配量的传递对准有一定的影响。从旋转调制系统的误差特性出发,分析了旋转调制对以速度为匹配量传递对准的有利和不利影响,并针对不同的旋转调制周期进行了仿真验证,仿真结果表明当旋转周期远大于舒勒周期时,旋转调制引起的不利和有利影响都很小,可忽略不计;当旋转周期远小于舒勒周期时,旋转调制可提高子惯导的方位对准精度,但延长了系统的传递对准时间。例如,当旋转周期为3(°)/s时,水平对准时间由3 min延长到4 min,而对准精度由1.2′提高到0.2′;方位对准时间由10 min延长到16 min,而对准精度由2.2′提高到0.4′。  相似文献   

19.
为了提高捷联惯性组合导航系统的可靠性,将聚类支持向量机(C-SVM)应用于故障诊断技术,基于SINS/DVL/MCP/TAN组合导航系统建立了C-SVM故障诊断模型,将SINS/MCP、SINS/TAN和SINS/DVL三个子滤波器的相关特征量(残差值和状态检测函数)作为样本对C-SVM进行训练,并应用交叉验证法选择参数组.根据训练好的C-SVM模型分别对三个传感器进行故障诊断,若发生故障则屏蔽相应传感器的输出信息,利用其余的传感器进行重构.仿真结果表明,C-SVM的故障诊断正确率较高,特别是当训练样本数有限的情况下也能够达到较好的性能,克服了传统的神经网络在训练样本数较少时推广性能不足的问题,因此是一种理想的故障诊断技术.  相似文献   

20.
研究了一种可用于运载火箭的SINS/GNSS自主导航方案。起飞前捷联惯组采用基于惯性系重力加速度积分的解析粗对准和卡尔曼滤波精对准,起飞后采用SINS/GNSS卡尔曼滤波组合导航反馈实时修正姿态、速度和位置。仿真结果表明捷联惯组水平自主对准误差0.01°,方位自主对准误差1.5°,起飞后经组合导航修正后的姿态误差小于0.2°,速度误差小于0.4m/s,位置误差小于40m,考虑所有误差的蒙特卡罗仿真结果满足火箭入轨精度要求,此方案具有较高的工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号