首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
苏潜  黄妍  张颖 《分子催化》2016,30(2):151-158
采用离子交换法制备3种不同铜前驱体的Cu-SAPO-34分子筛催化剂,考察铜源对催化剂氨催化还原NO_x性能的影响,同时通过ICP、XRD、BET、H_2-TPR、XPS、NH_3-TPD等表征技术进行分析.活性结果表明,不同铜源制备的Cu-SAPO-34分子筛催化剂的NH_3-SCR高温活性基本相同,但中低温活性有较大差别.3种催化剂的中低温活性顺序为Cu(醋酸铜)-SAPO-34Cu(硫酸铜)-SAPO-34Cu(硝酸铜)-SAPO-34,以醋酸铜为铜源制备的催化剂中低温活性最高,在209℃NO_x转化率达85.2%.表征结果表明,不同铜源导致所制备催化剂的铜物种形式和数量及酸性强度不同,以醋酸铜为铜源制备的Cu-SAPO-34催化剂的Cu~(2+)起始还原温度最低,Cu~(2+)含量较多,酸性最强,因此其中低温活性最好.  相似文献   

2.
采用六亚甲基亚胺(HMI)为模板剂,合成了新型SAPO-35分子筛,研究发现SAPO-35的酸性随着硅铝摩尔比增加[n(SiO_2)/n(Al_2O_3)=0.3,0.5,0.7]呈现先增加后降低的趋势,当n(Si)/n(Al)=0.7时,部分Si将发生SM3取代,进而降低SAPO-35酸量.进一步采用旋转浸渍法和离子交换法对SAPO-35进行改性,制得Cu/SAPO-35催化剂,并研究了其催化氨气选择性还原(NH3-SCR)反应的性能.催化剂表征结果表明,Cu主要以Cu~(2+)离子形式存在于离子交换法制备的Cu/SAPO-35中,因此其NH3-SCR催化性能更优良.基于液相离子交换法,进一步研究了不同硅铝比[n(SiO_2)/n(Al_2O_3)=0.3,0.5,0.7]SAPO-35原粉酸性对所制备Cu/SAPO-35催化剂NH_3-SCR反应活性的影响,结果表明,分子筛原粉强酸量越大,制得的Cu基催化剂中Cu~(2+)离子含量越高,从而催化剂的SCR活性、N_2选择性更优.  相似文献   

3.
选择性催化还原NO_x (NH_3-SCR)已是柴油机尾气处理系统中有效的NO_x减排技术.铜基分子筛催化剂作为潜在的NH_3-SCR催化剂已被广泛研究,其中具有AEI结构的Cu-SAPO-18分子筛表现出优异的脱硝活性和水热稳定性,成为柴油机尾气后处理系统潜在的替代品.然而在实际的后处理应用中,生物柴油污染物、发动机润滑剂和燃料添加剂中的一些无机组分(K, Na, S, P, Ca和Mg等)可逐渐聚集在催化剂表面,导致催化剂孔道堵塞和活性位点丢失,最终导致SCR催化剂失活.由于碱金属和碱土金属在柴油衍生物中含量较高,因而其对SCR催化剂的影响引起了人们更多的关注.本文采用浸渍法制备了掺杂不同含量碱性无机污染物(K, Na, Ca和Mg)的Cu-SAPO-18催化剂,以阐明这些污染物对Cu-SAPO-18结构、酸性位点和铜物种的影响.XRD和氮吸附实验结果表明,低含量污染物的掺入造成催化剂孔道堵塞和比表面积下降,而高含量污染物引入导致催化剂部分结构被破坏,其中高含量Na的引入造成催化剂结构破坏最为严重.H_2-TPR和EPR结果表明,污染物引入Cu-SAPO-18后,催化剂的Cu~(2+)数目减少,这是由于Cu~(2+)被K~+, Na~+, Ca~(2+)和Mg~(2+)取代造成的.被取代的Cu~(2+)由于无法位于离子交换位点上会在煅烧过程中转变成CuO和CuAl_2O_4, CuO的产生会造成催化剂孔道堵塞甚至部分骨架结构坍塌.另外,NH_3-TPD结果表明,与新鲜催化剂相比,被污染的Cu-SAPO-18催化剂总酸性位点减少,这是由于H~+和Cu~(2+)被K~+, Na~+, Ca~(2+)和Mg~(2+)取代造成Br?nsted酸和Lewis酸减少造成的.催化剂比表面积的降低、Cu~(2+)数目以及酸含量的减少最终造成催化剂失活,且催化剂失活程度随无机污染物含量的增加而增大.但不同无机组分造成催化剂的失活程度不同,其中K, Na, Ca和Mg造成Cu-SAPO-18催化剂失活程度为K Na Ca Mg.此外, K, Na, Ca和Mg造成Cu-SAPO-18催化剂比表面积、Cu~(2+)含量以及酸含量的减少程度分别为Na K Ca Mg, Na K Mg Ca和K Na Ca Mg.其中酸含量下降程度与催化剂失活程度一致,表明在某种程度上,酸含量对催化剂NH_3-SCR活性的影响高于催化剂结构和Cu~(2+)对活性的影响.最后,我们还通过NH3-SCR动力学测试研究了K, Na, Ca和Mg对Cu-SAPO-18催化NH_3-SCR反应机理的影响,结果显示新鲜催化剂和被污染催化剂具有相近的活化能,表明无机污染物对Cu-SAPO-18催化NH3-SCR反应机理没有影响.  相似文献   

4.
采用一步法水热合成不同Cu/Al比的Cu-SAPO-34催化剂,并对其丙烯选择性催化还原NO(C3H6-SCR)性能进行了研究。通过N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、程序升温还原(H2-TPR)和原位漫反射傅里叶变换红外光谱(In situ DRIFTS)等研究手段对催化剂进行表征,考察Cu-SAPO-34中Cu物种含量对催化剂的物理化学性质和反应活性的影响。结果表明,当铜负载量为2.76%~4.12%(w/w)时,Cu-SAPO-34催化剂在富氧条件下300~400℃内表现出非常有吸引力的C_3H_6-SCR活性,可实现~100%的脱硝效率和~100%的N_2选择性。原位红外光谱研究表明,Cu-SAPO-34分子筛骨架上孤立的Cu~(2+)离子是NO吸附和活化形成NO_2~-/NO_3~-中间物种的主要活性位,并通过C_3H_6-SCR反应过程中Cu~(2+)/Cu~+氧化还原循环来实现Cu~(2+)离子的持续供给。  相似文献   

5.
选用不同种类的铵盐和调变Cu2+离子交换时间制备不同铜交换量的Cu-SAPO-34催化剂。并考察了铜交换量对催化剂在氨选择性催化还原(NH3-SCR)NOx反应中的催化性能和高温水热稳定性的影响。结果表明,Cu2+是Cu-SAPO-34催化剂在NH3-SCR反应中的主要活性中心,随着Cu交换量的增加催化剂的低温SCR活性先升高后降低。铜交换量为2.37%时,Cu-SAPO-34催化剂的低温活性最好,NOx转化率在185℃时即可达到80.0%,且最高达98.7%。ICP、H2-TPR、FT-IR和NH3-TPD等表征结果显示,Cu引入不但产生了新的氨吸附位点,增加了Lewis酸量,而且略微降低了SAPO-34上氨的吸附强度。继续增加Cu交换量反而导致催化剂的SCR活性下降,这是由于大量的Cu2+取代了桥式羟基Si-OH-Al中的H,抑制了SCR反应中NH3在催化剂表面的吸附、储存与迁移。此外,较高Cu交换量也不利于改善Cu-SAPO-34的高温水热稳定性。  相似文献   

6.
随着柴油车数量的增加,NO_x污染的控制成为了当今社会的一个重要议题,NO_x可以导致酸雨,光化学烟雾以及慢性健康问题.目前,具有八元环孔口的含铜CHA型分子筛(包括Cu-SSZ-13和Cu-SPAO-34)具有优异的高温水热稳定性及宽温度范围内的活性和N_2选择性,是最具有吸引力的氨选择催化还原催化剂,而且在欧洲和美国已经得到了应用.SAPO-34分子筛的一个重要缺陷就是在100 ℃以下,对水较为敏感,这主要是由于Si–O–Al键的水解造成的.研究表明,在室温下接触水蒸气后,SAPO-34的结晶度和比表面积只能部分恢复,而如果长达数月甚至更长时间的接触后,分子筛将会遭受骨架坍塌等不可逆的破坏,到目前为止,Cu-SAPO-34的低温水热稳定性相关问题并未得到清楚的阐述.本文系统研究了不同铜含量和硅含量的Cu-SAPO-34催化剂的低温水热稳定性.结果显示,低温水热处理后,所有催化剂的NH_3氧化活性和NH_3-SCR活性(主要是低温活性)都有所下降.29Si MAS NMR结果表明,在低温水热处理过程中,骨架结构的破坏在所难免,但催化剂上铜含量的增加有助于Cu-SAPO-34的骨架结构和酸性的更好保持.EPR结果表明,当催化剂上铜含量较低时,孤立Cu~(2+)的稳定性和SAPO分子筛骨架的稳定性呈现正相关的关系.具有较高铜含量(如3.67 wt%)的样品,尽管其骨架结构和酸性在低温水热处理过程中可以得到较好的保持,但活性Cu~(2+)的量仍会有明显的下降.由于部分样品在低温水处理后,NH_3氧化反应活性下降,我们推测CuO颗粒发生了聚结,从而抑制了催化剂的NH_3氧化反应活性,N_2O化学吸附实验也证实了该结论.在所有催化剂中,具有中等铜含量(1.37%)的高硅Cu-SAPO-34样品在低温水处理过程中的Cu~(2+)量和酸性质均得到了较好的保持,所以其水处理后的NH_3-SCR活性衰减最小.  相似文献   

7.
陈佳炜  赵茹  周仁贤 《无机化学学报》2018,34(12):2135-2142
通过一步法原位合成Cu-SSZ-13分子筛催化剂,考察了结晶反应时间对NH3选择性催化还原(NH3-SCR)催化性能的影响,利用H2程序升温还原(H2-TPR)、X射线衍射(XRD)、电子顺磁共振光谱(EPR)和X射线电子能谱(XPS)等分析手段表征催化剂。结果表明,结晶时间不同会影响到Cu-SSZ-13分子筛中活性Cu物种的含量和分布,结晶时间为4 d时Cu-SSZ-13分子筛的NH3-SCR催化性能最佳。高温水热条件下,Cu-SSZ-13分子筛中不稳定的Cu~(2+)A物种会发生迁移而形成相对稳定的Cu~(2+)B物种;Cu~(2+)物种发生团聚而造成分子筛结构破坏,部分Cu~(2+)物种也因分子筛骨架坍塌而被包埋,这是导致催化活性下降的主要原因。  相似文献   

8.
随着柴油车数量的增加,NOx污染的控制成为了当今社会的一个重要议题,NOx可以导致酸雨,光化学烟雾以及慢性健康问题.目前,具有八元环孔口的含铜CHA型分子筛(包括Cu-SSZ-13和Cu-SPAO-34)具有优异的高温水热稳定性及宽温度范围内的活性和N2选择性,是最具有吸引力的氨选择催化还原催化剂,而且在欧洲和美国已经得到了应用.SAPO-34分子筛的一个重要缺陷就是在100 oC以下,对水较为敏感,这主要是由于Si–O–Al键的水解造成的.研究表明,在室温下接触水蒸气后,SAPO-34的结晶度和比表面积只能部分恢复,而如果长达数月甚至更长时间的接触后,分子筛将会遭受骨架坍塌等不可逆的破坏,到目前为止,Cu-SAPO-34的低温水热稳定性相关问题并未得到清楚的阐述.本文系统研究了不同铜含量和硅含量的Cu-SAPO-34催化剂的低温水热稳定性.结果显示,低温水热处理后,所有催化剂的NH3氧化活性和NH3-SCR活性(主要是低温活性)都有所下降.29Si MAS NMR结果表明,在低温水热处理过程中,骨架结构的破坏在所难免,但催化剂上铜含量的增加有助于Cu-SAPO-34的骨架结构和酸性的更好保持.EPR结果表明,当催化剂上铜含量较低时,孤立Cu2+的稳定性和SAPO分子筛骨架的稳定性呈现正相关的关系.具有较高铜含量(如3.67 wt%)的样品,尽管其骨架结构和酸性在低温水热处理过程中可以得到较好的保持,但活性Cu2+的量仍会有明显的下降.由于部分样品在低温水处理后,NH3氧化反应活性下降,我们推测CuO颗粒发生了聚结,从而抑制了催化剂的NH3氧化反应活性,N2O化学吸附实验也证实了该结论.在所有催化剂中,具有中等铜含量(1.37%)的高硅Cu-SAPO-34样品在低温水处理过程中的Cu2+量和酸性质均得到了较好的保持,所以其水处理后的NH3-SCR活性衰减最小.  相似文献   

9.
采用浸渍法制备了系列铜锰复合氧化物分子筛催化剂(Cu-Mn/SAPO-34),在固定床反应器上考察不同Cu/Mn质量比对分子筛催化剂选择催化还原NO的影响,利用XRD、NH_3-TPD、H_2-TPR、XPS等手段对催化剂进行了表征分析。结果表明,双金属改性的Cu-Mn/SAPO-34催化剂在NH_3-SCR反应中表现出较为优异的催化活性,具有较宽的活性温度窗口。当Cu/Mn质量比为1∶4时,催化剂具有最宽的活性温度窗口,NO_x转化率在250℃已达到85.39%,在300-400℃转化率均达到96%以上,450℃时仍能达到90%。铜和锰物种高度分散于催化剂表面,未改变SAPO-34的晶体结构,且构成协同作用。Cu-Mn共同负载促进了Cu~(2+)向Cu~+的转变,增加了高价态Mn~(4+)和Mn~(3+)的比例,有利于提高低温活性,促进催化反应的进行。Cu-Mn/SAPO-34/1∶4具备丰富的酸性位、良好的氧化还原性能和抗SO_2/H_2O性能,该配比有助于催化剂的催化活性和稳定性的提高。  相似文献   

10.
氨选择催化还原NO_x(NH_3-SCR)是重要的柴油车尾气脱硝技术.发展高效且稳定的催化剂是提升该技术指标、应对严苛排放标准的关键.近年来,以Cu-SSZ-13和Cu-SAPO-34为代表的金属离子负载分子筛催化剂材料因其较宽的活性温度窗口和高水热稳定性受到研究者的广泛关注.Cu-SSZ-13分子筛催化剂已被BASF公司商业应用.相较Cu-SSZ-13,Cu-SAPO-34具有更优的低温活性与高温水热稳定性,且合成成本低廉.但Cu-SAPO-34的低温耐水性差,当采用传统的金属离子负载过程进行反复多次离子交换时,存在分子筛结晶度下降(部分骨架结构塌陷)的风险.使用铜四乙烯五胺络合物(Cu-TEPA)作为模板剂和铜源一步合成Cu-SAPO-34可以避免反复的离子交换过程,但由于Cu-TEPA的模板导向能力过强,Cu负载量难以控制,而降低Cu-TEPA的投料量则会损失产品收率.同时,该方法合成的Cu-SAPO-34中含有大量硅岛,分子筛催化剂的水热稳定性显著降低.针对这些问题,本文提出利用一步合成的高铜含量Cu-SAPO-34作为前驱体与铜源合成Cu-SAPO-34的方法(命名为重构法).该方法不仅产品收率高,而且Cu和Si的含量/分布可控,合成样品的NH_3-SCR催化性能和水热稳定性也明显提升.EDX结果显示,焙烧后的Cu-SAPO-34中铜分布均匀,说明前驱体充分参与了Cu-SAPO-34的重构.~(13)C NMR和元素分析结果显示,相较一步法合成的Cu-SAPO-34,重构的Cu-SAPO-34中的四乙烯五胺在模板剂中的比例明显下降.Cu-TEPA限域在前驱体的CHA笼中,有效抑制其结构导向剂的作用.Cu引入量由前驱体加入量决定.~(29)Si NMR结果显示,Cu-SAPO-34中的硅主要呈Si(4Al)分布,这有利于Cu-SAPO-34保持良好的高温水热稳定性.NH_3-SCR反应结果显示,相较一步法合成的Cu-SAPO-34,重构的Cu-SAPO-34表现出良好的NH_3-SCR反应活性和更优异的高温水热稳定性.不同硅含量的重构Cu-SAPO-34的NH_3-SCR反应结果显示:在低温段,低硅含量的Cu-SAPO-34具有更高的反应活性;在高温段,高硅含量的Cu-SAPO-34具有更高的反应活性.通过NH_3-TPD和原位红外漫反射分析发现,低硅含量的Cu-SAPO-34具有相对较弱的酸性,使得吸附的氨具有较高的反应性,催化剂的低温活性较高.  相似文献   

11.
王玉春  郑华艳  李忠 《催化学报》2016,(8):1403-1412
碳酸二甲酯(DMC)是一种应用极其广泛的绿色化工产品,其中经济、绿色的甲醇氧化羰基化合成 DMC工艺极具工业前景,而 Y分子筛负载铜(CuY)是有效催化剂之一.众所周知, CuY催化剂上的 Cu+是催化活性中心. Cu+催化活性中心的引入方式用两种:(1) CuCl直接与 HY分子筛固相离子交换;(2) Cu2+与 NaY分子筛溶液离子交换,然后 Cu2+自还原生成活性中心 Cu+.在无溶剂条件下制备 CuY催化剂时,载体 HY分子筛中的可交换位 H+量是决定催化剂 CuY氧化羰基化催化性能的关键因素.文献通过以不同硅铝比的 HY分子筛为载体制备的催化剂 CuY,研究铜离子可交换位 H+量对氧化羰基化的影响,然而,硅铝比的不同也直接影响了分子筛骨架的组成、Si–O–Al的键角、甚至影响了 Al3+的分散度,这些因素都直接影响了 CuY催化剂活性.因此,研究 NaNH4Y分子筛载体中的可交换位(NH4+)的量与 CuY催化剂活性间的关系具有非常重要的意义.本文将 NaY分子筛与不同浓度的 NH4NO3溶液进行离子交换,制得具有不同 NH4+交换度的 NaNH4Y分子筛,以其为载体,以具有易升华、易分解性质的乙酰丙酮铜 Cu(acac)2为铜源,在无溶剂条件下,高温热处理二者固相混合物, NaNH4Y 分子筛中的 NH4+与 Cu(acac)2中的 Cu2+发生了离子交换, Cu2+进一步发生自还原生成活性中心 Cu+,成功地制备了完全无氯的 CuY催化剂,应用于催化常压甲醇氧化羰基化合成 DMC过程,研究 NaNH4Y分子筛中的铜离子可交换位 NH4+与催化剂 CuY催化性能间的关系.通过各种表征及对 CuY催化剂在甲醇氧化羰基化过程中催化活性分析发现, Y分子筛经过 NH4NO3溶液离子交换及催化剂的制备过程,其八面沸石结构和孔道保持良好.以未经过离子交换的 NaY负载的 CuY催化剂上的铜物种完全以 CuO形式存在,且没有催化活性.随着 NH4+交换度增加, CuY催化剂表面 CuO含量逐渐降低,而活性中心 Cu+含量逐渐增加,且其催化活性也随之增加.当 NH4+交换度趋于极限值时, CuY催化剂中 Cu+含量达最大,其催化活性也达最佳, DMC的时空收率和选择性分别为267.3 mg/(g·h)和68.5%,甲醇转化率为6.9%.因此,无溶剂条件下,以 NaNH4Y分子筛为载体, Cu(acac)2为铜源,制备完全无氯 CuY催化剂时, NH4+是形成 Cu+活性中心的必须条件,且 NH4+交换度直接影响催化剂 CuY的催化活性.  相似文献   

12.
CeTiOx具有高的 NH3选择性催化还原(NH3-SCR)活性和 N2选择性,被认为是具有应用前景的催化剂.但是, CeTiOx不抗碱金属中毒,在含有大量 K离子的生物质柴油的燃烧装置中中毒尤为严重,因而限制了 CeTiOx催化剂在生物质燃料装置上的进一步应用.本文通过在 CeTiOx催化剂中掺杂 Zr元素来提升其抗 K+中毒的能力.采用共沉淀法制备了 CeTiOx (CT)和 CeZrTiOx (ZCT)两种 NH3-SCR催化剂.将不同含量的硝酸钾(K+/Ce =0.1,0.2)负载在催化剂表面,焙烧处理后得到 K+中毒的催化剂(K0.1-CT, K0.2-CT, K0.1-ZCT和 K0.2-ZCT).通过测定各催化剂的催化活性来研究 Zr的添加对 CT催化剂抗 K+中毒能力的影响. NH3-SCR活性数据表明, CT和 ZCT催化剂都达到了接近100%的 NOx转化率,且两种新鲜催化剂的催化性能基本无差别.浸渍不同含量的 K+之后, ZCT催化剂明显优于 CT催化剂: K0.1-CT和 K0.1-ZCT上的 NOx转化率分别为90%和62%;而 K0.2-CT和 K0.2-ZCT上分别为48%和13%.可见,随 K+添加, ZCT催化剂活性降低更缓慢,表明 Zr的添加提高了 CT催化剂抗 K+中毒能力. BET数据显示,在新鲜催化剂中, Zr的添加增加了催化剂比表面积和孔体积; K+中毒之后, ZCT仍然表现出比 CT更好的织构性能. X射线衍射和拉曼光谱结果显示,随着 K+负载量的增加,锐钛矿 TiO2的衍射峰逐渐变得尖锐,说明无定形 TiO2逐渐结晶并不断长大,从而导致催化剂比表面积下降.与 CT相比,随着 K+负载量增加,催化剂晶型并没有明显变化.这说明 Zr的添加可以抑制锐钛矿 TiO2的结晶及长大.由此可见 Zr的添加可抑制因 K+中毒而引起的催化剂结构变化,所以仍能保持较高的 NOx转化率.透射电镜(TEM)结果表明,随着 K+负载量逐渐增加,催化剂的晶粒尺寸逐渐变大: CT, K0.1-CT和 K0.2-CT的平均晶粒尺寸分别为7,13和15 nm,而 ZCT催化剂晶粒尺寸增大并不明显,分别为5,8和10 nm.很明显, Zr的添加抑制了催化剂晶粒长大,从而提高了其结构稳定性能.综上可见,由负载 KNO3而引起的“熔盐效应”得到了有效抑制. X射线光电子能谱结果表明,随着 K+负载量增加, CeZrTiOx催化剂的 Ce3+/Ce4+值下降得比 CeTiOx更缓慢,说明加入 Zr之后,催化剂具有更多的晶格缺陷和氧空缺,因而有利于 NH3-SCR活性的提高. 另外,催化剂酸性也是影响 NH3-SCR活性的关键因素. NH3程序升温脱附结果显示, Zr的添加可以使 CeTiOx催化剂在 K+中毒之后仍保持较高的酸性,即 Zr的添加抑制了 K+对催化剂表面酸性的巨大破坏作用.综上可知, Zr的添加提升了 CeTiOx催化剂抗 K+中毒能力.  相似文献   

13.
氮氧化物(NO_x)是主要的大气污染物之一.氨气选择性催化还原法(NH_3-SCR)是目前去除固定源排放的氮氧化物的最有效方法,被广泛用于燃煤或者生物质的火电厂中.催化剂是NH_3-SCR法的核心,其中V_2O_5-WO_3/TiO_2催化剂是主要的商业SCR催化剂;但是V_2O_5有毒,对环境的影响很大;另外,该催化剂具有较高的SO_2氧化性能.因而研究者一直在探索新型的SCR催化剂.SO_2是燃煤电厂烟气中的典型气体之一,所以抗硫性能是催化剂的一个重要指标.在SCR反应条件下,SO_2和O_2容易与氧化物催化剂发生反应生成稳定性较高的硫酸盐,覆盖在催化剂表面从而引起催化剂失活.但已有研究发现,硫化会提高K中毒后的V_2O_5-WO_3/TiO_2催化剂的活性.并且,短时间的硫化可以明显提高CuO/Al_2O_3的NH_3-SCR活性.硫酸盐催化剂或许具有较低毒性和较高抗硫性能,应该是一种有前景的SCR催化剂.本文以商业纳米TiO_2为载体,采用湿式浸渍法制备了一系列的CuSO_4/TiO_2催化剂.在自制的活性评价装置上测试了样品的NH_3-SCR活性并且在340℃下连续24 h测试了SO_2、水蒸气及两者共同作用对催化剂活性的影响.使用N_2等温吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、H_2程序升温还原(H2-TPR)和NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征.另外,采用原位红外漫反射光谱研究了CuSO_4/TiO_2催化剂上的NH_3-SCR反应过程.N_2等温吸附-脱附结果表明,负载的CuSO_4没有明显改变载体的孔结构.而XRD结果仅显示锐钛矿TiO_2的衍射峰,说明CuSO_4在载体上有较好的分散度或者CuSO_4的含量低于检测限.XPS结果显示,催化剂中的铜主要以Cu~(2+)形式存在,硫主要以SO_4~(2-)形式存在,而氧主要以晶格氧和吸附氧两种形式存在,并且CuSO_4的存在会增加催化剂中吸附氧的含量.H_2-TPR结果表明,随着CuSO_4含量的增加,催化剂的氧化还原能力逐渐增强.NH_3-TPD结果表明,催化剂表面的酸性位数目随着样品中CuSO_4含量的增加而增加.纯TiO_2的NH_3-SCR活性很差,当温度从300℃增加到450℃时,最高NO_x转化率仅为32.7%.但当CuSO_4负载到TiO_2上以后,催化剂活性明显提高.在反应温度高于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率在94%以上,与商业V_2O_5-WO_3/TiO_2催化剂相当,并且其N_2O生成量低于商业催化剂.不过,当温度低于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率明显低于商业催化剂,说明CuSO_4/TiO_2催化剂的活性仍有待改善.连续24 h测试了SO_2、水蒸汽及两者的共同作用对CuSO_4/TiO_2催化剂活性的影响.结果显示,单独的水蒸气会导致活性轻微下降,但SO_2以及两者共同存在时对催化剂的活性基本没有影响.CuSO_4/TiO_2催化剂的NH_3吸附红外光谱表明,催化剂上存在Lewis和Bronsted两种酸性位,但Bronsted酸性位上的NH_4~+稳定性较差,280℃时即基本消失.在高温时,NH_3主要吸附在Lewis酸性位上且CuSO_4/TiO_2催化剂对NO_x的吸附能力较差,红外光谱未检测到NO_x的吸附峰.380℃下,当NO和O_2通入预吸附NH_3的催化剂样品时,属于Lewis酸性位上NH_3的红外峰明显下降,说明Lewis酸性位上吸附的NH_3参与了反应.CuSO_4/TiO_2显示出高的抗硫抗水性能和比较好的NH_3-SCR活性,应该是一种有应用前景的SCR催化剂.CuSO_4可以增加催化剂的酸性位数目和吸附氧量.根据原位红外漫反射结果,CuSO_4/TiO_2上的SCR反应遵循Eley-Rideal机理.气相的NO与吸附在Lewis酸性位上的NH_3反应生成N_2和H_2O或许是主要的反应途径,并且吸附氧可能会促进这个过程.  相似文献   

14.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

15.
赵欣  黄垒  李红蕊  扈航  韩瑾  施利毅  张登松 《催化学报》2015,(11):1886-1899
选择性催化还原(SCR)是目前固定源及移动源中控制NOx排放最为有效的技术手段之一.工业上应用最广泛的商业SCR催化剂是钒基催化剂.钒基催化剂经钨(钼)改性后具有较好的活性、稳定性和抗水抗硫性能,但在应用过程中仍存在N2选择性较低、活性温度窗口(300–400 oC)较窄及高温下V2O5极易流失等不足,且钨(钼)的价格十分昂贵.因此,用廉价组分提高钒基催化剂的催化性能在实际工业应用中仍具有重要意义.研究发现,很多非贵金属(如Cu, Fe, Mn, Co, Ce, Zr, Nb, Sn, La等)都可以代替钨(钼)用来提高钒基催化剂的选择性、活性温度窗口和(热)稳定性能等.引入的金属通常以氧化物或钒酸盐形式存在,并与活性组分钒物种有很强的相互作用,从而提高钒物种的氧化还原性能及分散度,同时增大表面酸性位数量,抑制锐钛矿向金红石相转变.近年来很多研究发现,经金属改性的钒基催化剂以钒酸盐形式存在时可有效提高催化剂活性和 N2选择性,尤其可显著提高催化剂的(热)稳定性.本文采用浸渍法以廉价易得、储量丰富的过渡金属改性钒基催化剂,得到高度分散的M-V/TiO2(M = Cu, Fe, Mn, Co)脱硝催化剂.结果发现, Cu-V/TiO2和Fe-V/TiO2催化剂表现出较好的催化活性和N2选择性以及优异的稳定性和抗H2O/SO2性能,其中Cu-V/TiO2的工作温度窗口扩展到225–375oC. X射线衍射、拉曼光谱和EDX-mapping表征结果证明,钒物种及引入的金属高度分散在TiO2载体表面,并生成了钒酸盐.氢气程序升温还原结果表明,钒酸盐的形成导致钒物种的还原峰向低温区移动,有利于催化剂氧化还原性能的提升. X射线光电子能谱结果表明, Cu-V/TiO2催化剂表面具有更多的活性氧物种(Oα),且具有较强的电子间相互作用,是SCR活性提高的关键原因之一. NH3程序升温脱附和原位红外光谱实验结果表明,金属的引入可以提高酸量和酸强度; Cu-V/TiO2催化剂表面主要为Lewis酸性位,而Fe-V/TiO2催化剂表面主要为Br?nsted酸性位,两者可能导致不同的SCR反应机理,但均可以提高催化剂在高温下的N2选择性.综上所述,过渡金属改性的钒基催化剂中Cu-V/TiO2具有最好的活性和N2选择性以及较强的稳定性和抗H2O/SO2性能,可能得益于其表面更多的活性氧物种和更多更强的酸性位.  相似文献   

16.
环己醇和环己酮(KA油)是制备尼龙所需材料己二酸和己内酰胺的重要中间体,也可用作油漆、农药和染料等的溶剂以及染色和褪光丝的均化剂等.工业上制取KA油的方法主要为苯酚加氢法、环己烯水合法和环己烷氧化法,其中环己烷氧化法最为普遍,是非常重要的工业过程.为获得适宜的KA油选择性,工业上普遍采用Co盐为催化剂,将环己烷氧化单程转化率控制在5.0%以下,从而使得产物选择性达到70%以上.该环己烷氧化制KA油过程不仅生产效率较低,而且所用均相催化剂因分离困难而不能重复使用.因此,当前关于环己烷氧化反应催化剂的研究均是围绕多相催化剂进行.氧气选择性氧化环己烷反应因具有更高的原子经济性而逐渐成为环己烷氧化法制KA油研究中最具挑战性的课题.该反应是自由基机理,而Co~(2+),Cr~(3+),Mn~(2+)和Ce~(2+)等金属离子可以促进自由基链反应,因此含有这些金属的多相催化剂被广泛用于该反应.另一方面,AlPO-n系列分子筛由于具有特殊的孔结构和一定的表面酸性,在催化反应中显示出较大的应用潜力.如果进行杂原子掺杂,通过改变分子筛骨架的电荷平衡,可以有效提高其表面酸性.例如磷酸硅铝分子筛(SAPO-5)具有中等强度的酸性和良好的择形性,因而作为固体酸催化剂广泛用于乙醇脱水、甲醇制烯烃、丙烯聚合和苯乙烯环氧化等反应,表现出较高的选择性和良好的稳定性.本文以传统均相Co盐催化剂的多相化为出发点,制备了Co掺杂SAPO-5与分子筛催化剂(Co-SAPO-5),考察了Co掺杂量对催化剂结构、表面性质以及氧气选择性氧化环己烷反应性能的影响.结果表明,一部分Co进入分子筛骨架,同时有少量Co以氧化钻形式高度分散在SAPO-5表面.Co掺杂对SAOP-5催化剂比表面积没有显著影响,但可使其孔体积减小.相反,Co掺杂可以提高SAOP-5分子筛表面B酸性位数量和总酸量.活性测试结果表明,环己烷转化率随着Co-SAPO-5催化剂中Co含量的增加而增加,但KA油选择性在转化率高于6.3%时急剧下降.还考察了反应温度、反应时间、初始氧气压力和催化剂用量对Co-SAPO-5分子筛催化剂性能的影响,得到了最优反应条件.以Co-SAPO-5-0.2(Co/Si摩尔比为0.2)分子筛为催化剂时,KA油总收率最高可达7.8%.另外,Co-SAPO-5催化剂在环己烷氧化反应中显示出很好的稳定性,Co-SAPO-5-0.2催化剂套用6次后活性几乎没有变化.  相似文献   

17.
杨琦  杜林颖  王旭  贾春江  司锐 《催化学报》2016,(8):1331-1339
在过去的25年,纳米金催化剂上 CO氧化反应得到广泛研究,但始终没有一致的结论。这是因为影响纳米金催化活性的因素很多,包括金的价态、载体的性质、氧空位、金属与载体之间的相互作用等,尤其是各影响因素之间相互牵制,增加了催化反应机理的研究难度。氧化铈载体表面氧缺陷的浓度较高,有利于活性金属组分在其表面的稳定和分散,因此氧化铈纳米晶负载的 Au催化剂受到广泛关注。此外,当 CeO2晶格中部分 Ce被化学性质不同的其它元素取代后,可以促进 CeO2晶格氧的活化,提高氧的储放能力,从而有利于催化反应进行。因此,本文采用水热法合成了组成均匀的 CeO2, CeZrOx和 CeZrLaOx三个载体,并通过沉淀-沉积法负载金。利用 X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电镜(HRTEM)、X射线吸收精细结构(XAFS)和氢气程序升温还原(H2-TPR)等技术分析了催化剂的物相结构、表面性质、形貌以及金纳米颗粒的大小和价态等性质,并结合其在 CO氧化反应中催化性能的差异,探讨影响金催化剂活性的关键因素。 XRD, TEM, HRTEM和 XAFS结果表明,三个载体上所得金纳米颗粒的平均尺寸都在2–4 nm,且分散较好; XPS结果表明,影响催化剂活性的关键因素不是金的价态,而是载体表面的活性氧物种。从Raman结果可知,掺杂后的氧化铈载体上氧空位浓度明显增加,因而催化剂活性都有所提高。 H2-TPR进一步探讨了三个载体以及负载金后其氧化还原能力的变化,结果表明,金和载体之间的相互作用可以增强载体的氧化还原性能以及表面氧空位浓度,进一步提高了催化剂活性,而负载金催化剂氧化还原性能的变化与载体的组成密切相关。由于锆的掺杂可使金与载体之间相互作用减弱,而镧则增强了二者间相互作用,因此 Au/CeZrLaOx催化剂上锆和镧的协同掺杂作用使其表面活性氧物种浓度最高,低温时表现出最高的催化活性。  相似文献   

18.
作为聚对苯二甲酸丙二醇酯(PTT)的不可替代原料,1,3-丙二醇(1,3-PDO)广泛应用于聚酯、树脂、化妆品、润滑剂和制冷剂等领域.采用丙二酸二乙酯(DEM)一步加氢合成1,3-PDO可避免传统化学工艺中醛类副产物的生成和生物法中产品纯度不高的问题,进而满足下游PTT的品质要求. Cu/SiO2催化剂因铜与载体间的强相互作用以及硅胶的弱酸性有利于催化活性中心的建立而被广泛应用于气相加氢反应,可以选择性地活化C?O键而不活化C?C键.因此,本文将Cu/SiO2催化剂应用于DEM加氢反应,重点考察了焙烧温度对催化剂结构与性能影响的本质原因.
  采用蒸氨法制备Cu/SiO2催化剂,将一定量氨水滴加到硝酸铜水溶液中形成铜氨溶液后滴加JN-30硅溶胶,经老化、过滤、洗涤、烘干、焙烧、压片成型后得到40?60目的催化剂.将不同温度(623?1023 K)焙烧的Cu/SiO2催化剂装填入自制连续高压固定床反应器中进行DEM加氢反应,并采用N2物理吸脱附、电感耦合等离子体发射光谱、N2O化学吸附、X射线衍射、傅里叶红外光谱、H2程序升温还原(TPR)、透射电镜及X射线光电子能谱等手段对不同温度焙烧催化剂进行表征.结果表明,在723 K焙烧的催化剂具有最大的比表面积和最均一的孔径分布,其铜组分分散均匀,活性铜表面积最大,焙烧后可以形成最多的页硅酸铜,导致还原后Cu+/Cu0比例较高.在该催化剂作用下,于473 K、2.0 MPa、氢酯摩尔比330和液体空速1.8 h–1条件下, DEM转化率为90.7%,1,3-PDO选择性为32.3%.
  焙烧温度对Cu/SiO2催化剂组成、织构、结构、形貌及还原后的价态有较大影响.在焙烧温度为623?1023 K时,低温焙烧有利于生成页硅酸铜,而高温焙烧则有利于形成CuO.在焙烧温度升高的过程中,铜组分形态会发生较大变化,在623?723 K焙烧的催化剂中页硅酸铜含量不断增加;继续升高温度至823 K,页硅酸铜含量减少,但是分散变差,导致铜的比表面积、孔体积和孔径最小;进一步升高温度至923 K,页硅酸铜消失, CuO分散均匀, H2-TPR的还原峰窄且对称;当温度升高到1023 K时,铜晶体迅速长大而较难被还原.  相似文献   

19.
利用金属蒸气法制备了三种不同金属重量比的树脂固载及活性炭负载Pd Cu双金属催化剂.透射电镜(TEM)和X 射线衍射(XRD)测定结果表明催化剂中Pd Cu已形成合金.合金粒度极小,平均直径小于5nm.树脂固载催化剂金属粒度远小于活性炭负载催化剂的金属粒度.X 射线光电子能谱(XPS)结果表明Pd和Cu均以零价态存在.在4 甲基 3 戊烯 2 酮加氢反应中,树脂固载催化剂的活性和选择性均高于相应的活性炭负载催化剂  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号