首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
商业选择性催化还原(SCR)催化剂成分主要有V_2O_5,WO_3和TiO_2,但适用温度窗口较窄(300-400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯TiO_2和ZrO_2载体,TiO_2-ZrO_2具有较高的热稳定性以及较多的酸位,虽然有关TiO_2-ZrO_2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对NH_3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同NH_3-SCR脱硝催化剂的起活温度不同.同时,NH_3和NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究NH_3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的TiO_2-ZrO_2固溶体,并分步浸渍不同质量比的WO_3和1%V_2O_5,最终得到一系列1%V_2O_5-x%WO_3/TiO_2-ZrO_2.然后通过X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了WO_3和ZrO_2对催化性能的影响以及V_2O_5-WO_3/TiO_2-ZrO_2催化剂的反应机理.N2物理吸附结果表明,WO_3的添加使得催化剂孔结构的热稳定性有所提高,同时随着WO_3含量增加催化剂的比表面积逐渐减小,但仍高于V_2O_5/TiO_2-ZrO_2催化剂;ZrO_2对催化剂比表面积增大效果比较明显.结合XRD结果表明,WO_3能促进金属氧化物在载体上的分散;相比于V_2O_5-WO_3/TiO_2催化剂,ZrO_2有利于活性组分的分散负载.比较系列V_2O_5-x%WO_3/TiO_2-ZrO_2的氨吸附情况,发现WO_3的添加增加了Br?nsted酸的稳定性,其中以9%WO_3的效果最显著.催化剂氨吸附中间物种(–NH_2)的发现,证实了WO_3添加促进了NH_3的活化,有利于脱硝反应的进行.SCR反应结果显示,V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂在300–450 ℃时NO_x转化效率最优,并发现O_2的存在促进了NO_x的转化.采用in situ DRIFTS研究了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂脱硝机理,300和350 ℃时NH_3,NO,NO+O_2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为Lewis酸中心,Br?nsted酸中心的NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与NH_3相比,NO只能以NO_2的形式弱吸附在催化剂表面.因此,该催化剂遵循Eley-Ridel脱硝机理.而V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂具有相对较高的脱硝效率,因此用来着重研究NH_3-SCR机理.在NH_3吸附过程中,NH_3(1204,1602,3156,3264,3347 cm~(-1))和活性中产物NH_2(1550 cm~(-1))在催化剂表面的吸附(恒温300 ℃)是稳定的;随后通入NO+O2时,NH_3吸附过程中的所有吸收峰(包括NH_2)均逐渐减小(NH_3吸附态与NO结合后分解为N_2和H_2O),同时出现H_2O的振动峰,这证明了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂的脱硝反应过程.各类气体吸附情况表明,NO在商业催化剂的吸附状态与V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂相同;但NH_3吸附结果表明,Br?nsted酸中心和Lewis酸中心都是催化剂的活性中心;NO+O_2的通入使得催化剂表面的NH_3和NH~(4+)都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的NO_x脱除路径.通过in situ DRIFTS比较O_2的存在对脱硝反应产生的不同影响来确定O_2的作用.两类催化剂上O_2均参与了H_2O的形成,促进了催化反应的完成;当O_2不存在时,NO的还原受到了极大地抑制,同时也未出现H_2O;两者的脱硝效率大大降低.H_2-TPR和NH_3-TPR结果进一步证实O_2的作用主要是氧化NO及参与催化过程H_2O的形成.  相似文献   

2.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   

3.
氮氧化物(NO_x)是一种主要的大气污染物,采用氨选择性催化还原(NH_3-SCR)是实现NO_x排放控制的最有效手段。以V_2O_5/TiO_2为研究对象,通过引入CeO_2对其结构及表面性质进行改性,显著提高了V_2O_5/TiO_2催化剂的NH_3-SCR反应性能,其中1%(质量分数)V_2O_5/Ce_(0.1)Ti_(0.9)O_2催化剂在180~470℃内NO_x的转化率在80%以上,具有较宽的温度操作窗口和良好的抗硫稳定性。表征结果表明:CeO_2的引入可抑制TiO_2晶体的长大,产生更多的结构畸变,并显著增大催化剂的比表面积。V和Ce物种之间的相互作用促进了催化剂表面V~(5+)物种的形成,增强了催化剂对NO的吸附和氧化能力,并提供较多的弱和中等强度的酸性位,导致其低温SCR反应性能的显著升高;但同时表面强酸中心数量的减少以及NH_3非选择性氧化能力的升高,使其高温区SCR的活性明显降低。  相似文献   

4.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一.V_2O_5/TiO_2催化剂被广泛应用于氨法选择性还原氮氧化物(NH_3-SCR)反应,但该催化剂存在工作温度高(300–400℃)及SO_2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温SCR催化剂具有重要意义.过渡金属氧化物(如Fe_2O_3,MnO_x和CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在SO_2和H_2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注,Yang等首次将V_2O_5/TiO_2-PILC催化剂应用于NH_3-SCR反应,发现其催化活性高于传统V_2O_5/TiO_2催化剂.柱撑黏土基催化剂在NH_3-SCR反应中也显示出良好抗硫性能,但V_2O_5/TiO_2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列V_2O_5/TiO_2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.首先采用离子交换法制备出TiO_2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV_2O_5/TiO_2-PILC催化剂.同时,制备了传统V_2O_5/TiO_2和V2O5-MoO_3/TiO_2催化剂作为对比.活性评价结果显示,4V/TiO_2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160℃时,NO转化率可达80%以上.同时,4V/TiO_2-PILC催化剂还具有较宽的反应温度窗口,在260–500℃范围内,NO转化率保持在90%以上.向反应体系中加入0.05%SO_2和10%H_2O后,在低温(160℃以下)时所有催化剂的反应活性都有一定提高,可能是由于SO_2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO_2和4V6Mo/TiO_2催化剂活性均明显下降,而4V/TiO_2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示,SO_2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态SO_4~(2–)物种形式存在,而在4V/TiO_2-PILC催化剂表面离子态SO_4~(2–)物种的量最少.X射线光电子能谱及O_2程序升温脱附结果显示,在4V/TiO_2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在SO_2气氛下,离子态SO_4~(2–)物种在SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态SO_4~(2–)物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

5.
近年来, NO_x的排放造成了严重的环境污染.氨选择性催化还原技术(NH3-SCR)是目前消除NO_x最有效的手段之一.V_2O_5-WO_3/TiO_2催化剂在300–400°C范围内表现出优异的脱硝性能,因此被广泛用于NH3-SCR反应.然而该催化剂抗碱(土)金属中毒性能较差,且碱(土)金属碱性越强对催化剂的毒害越大(即K Na Ca Mg).已有研究显示,当K_2O质量分数达1%时,催化剂将完全失活,所以对传统的V_2O_5-WO_3/TiO_2催化剂进行改性以提高其抗K中毒性能具有十分重要的意义.最近, CeO_2由于具有优异的氧化还原性能和储/释氧能力,在NH3-SCR反应得到了广泛的关注.研究显示, CeO_2的改性可提高钒基催化剂脱硝活性及抗碱金属中毒性能,这主要是由于CeO_2的掺杂可以有效提高催化剂表面酸性及氧化还原能力. ZrO_2是一种酸碱两性氧化物,常被用作载体或者助剂.研究显示, ZrO_2的引入可以提高催化剂热稳定性,增大比表面积以及提高氧迁移能力.基于此,我们制备了一系列的V_2O_5-WO_3/TiO_2-ZrO_2, V_2O_5-WO_3/TiO_2-CeO_2以及V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化剂,以期提高V_2O_5-WO_3/TiO_2催化剂脱硝性能及抗K中毒能力.研究发现, Ce~(4+), Zr~(4+)共掺杂可以有效提高V_2O_5-WO_3/TiO_2催化活性,拓宽反应温度窗口,增强抗K中毒能力.进一步借助X射线衍射、比表面积测定、氨气-程序升温脱附、氢气-程序升温还原和X射线光电子能谱等表征对催化剂进行全面分析.结果显示, Ce~(4+), Zr~(4+)共掺杂对V_2O_5-WO_3/TiO_2催化剂物理化学性质的影响与其脱硝性能及抗K中毒能力有着密不可分的关系.首先, Ce~(4+), Zr~(4+)可以掺杂进入TiO_2晶格,抑制TiO_2晶粒的生长,从而导致比表面积以及总孔体积的增加;比表面积的增加有利于活性物种的分散,而总孔体积的增加有利于反应物分子与催化剂充分接触.其次, Ce~(4+), Zr~(4+)共掺杂可以提高催化剂表面酸性和氧化还原性能,表面酸性的增加有利于催化剂吸附与活化反应物种NH_3,氧化还原性能的提高有利于NO氧化为NO_2,进而通过"快速NH3-SCR"反应提高催化剂活性;同时, Ce~(4+), Zr~(4+)共掺杂还可以有效降低K中毒对表面酸性和氧化还原性能的影响,这主要是由于Ce~(4+)可以与K原子结合形成Ce-O-K物种,而Zr~(4+)的引入可以增加Ce~(4+)的热稳定性,使得更多的Ce~(4+)与K结合,避免了K与活性钒物种结合形成V-O-K物种,使得活性V5+得到了有效的保护.原位红外实验揭示了V_2O_5-WO_3/TiO_2-CeO_2-ZrO_2催化反应遵循L-H机理,且K中毒并未改变其反应机理.最后,该催化剂在H_2O和SO_2存在的条件下仍具有最佳的脱硝性能,因而有望用于实际高K含量的燃煤烟气脱硝.  相似文献   

6.
燃煤飞灰中的碱金属和碱土金属对NH_3-SCR催化剂的活性有显著的影响.近年来,研究者针对碱金属/碱土金属氧化物对SCR催化剂中毒作用开展了大量研究.另一方面,研究普遍认为,含溴化合物对提高SCR催化剂汞氧化性能具有明显促进作用.目前为止,针对碱金属/碱土金属溴化物对SCR催化剂影响的系统研究较少.我们课题组系统研究了不同阳离子的溴化物(NH_4Br,NaBr,KBr和CaBr_2)对商用V_2O_5-WO_3/TiO_2催化剂性能的影响.与未中毒样品相比,KBr中毒后的催化剂(记为L-KBr)上NO_x转化率明显下降,而NaBr和CaBr_2中毒的催化剂(分别记为L-NaBr和L-CaBr)上的SCR活性也有一定程度的降低.另外L-NaBr,L-KBr和L-CaBr催化剂的N_2选择性较差.XPS结果显示,KBr中毒后化学吸附氧(O_α)比例减小;同时,KBr中毒后还原性和表面酸度降低,这些可能是导致L-KBr催化剂的活性和N_2选择性变差的主要原因.对于L-CaBr催化剂,中毒后化学吸附氧O_α比例有所增加,这与H2-TPR结果显示可还原性增强一致.O_2-TPO结果显示,L-CaBr催化剂可氧化性降低,说明CaB_r2中毒还是影响到催化剂表面的氧化还原循环.催化剂CaBr_2中毒后表面被覆盖减少了反应活性位数量,但表面酸性的增强可能会抵消活性位点损失带来的负面影响.NH_3氧化结果显示,NH_3在L-CaBr催化剂表面发生过氧化反应,特别是高温下生成较多N_2O,降低N_2选择性,这可能是高温下L-CaBr催化剂SCR活性和N_2选择性下降的重要原因.CO_2-TPD结果表明,L-KBr和L-CaBr催化剂表面碱性强度增加,可能有助于增加NO_x物种的吸附量.基于以上活性评价和表征分析结果,我们尝试建立了不同溴化物中毒的催化剂表面酸碱性、氧化还原和催化性能之间的关系.  相似文献   

7.
郭志敏  袁坚 《分子催化》2016,30(6):547-556
采用浸渍法制备了V_2O_5-WO_3/TiO_2催化剂,并通过浸渍不同浓度的Na_2SO_4和NaCl,研究了不同的钠盐种类及含量对催化剂NH_3-SCR反应活性的影响,以考察催化剂的抗碱性,并采用BET、XRD、XPS、FT-IR和NH_3-TPD等测试技术对催化剂进行了结构与性能表征.研究结果表明钠盐降低了催化剂的比表面积,导致催化剂表面V~(5+)=O和V-OH酸性位点数量以及表面化学吸附氧含量降低,从而降低了催化剂的反应活性.催化剂钠盐中毒后NO转化率显著降低,脱硝温度窗口变窄.  相似文献   

8.
近年来,氨-选择催化还原(NH_3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NO_x)排放的最有效手段之一.V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2催化剂在300-400°C范围内表现出优异的脱硝性能和抗H_2O和SO_2中毒性能,因而被广泛用于NH_3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO_2到SO_3的活性较高、高温下将部分NH_3非选择性地氧化成N_2O、V_2O_5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO_2)因具有氧化还原性能优异、储/释氧能力强和Ce~(3+)/Ce~(4+)转换容易等优点而广泛用于NH_3-SCR反应.然而,单纯CeO_2的脱硝性能并不理想.研究表明,将CeO_2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH_3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH_3-SCR催化性能的影响规律尚不明晰.此外,SiO_2,γ-Al_2O_3,ZrO_2和TiO_2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH_3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH_3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO_2,γ-Al_2O_3,ZrO_2和TiO_2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO_2/SiO_2,CeO_2/γ-Al_2O_3,CeO_2/ZrO_2和CeO_2/TiO_2)用于NH_3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H_2-TPR)以及氨气-程序升温脱附(NH_3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO_2/γ-Al_2O_3催化剂的表面Ce3+含量明显大于CeO_2/SiO_2,CeO_2/ZrO_2和CeO_2/TiO_2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH_3-SCR反应性能.其次,CeO_2/γ-Al_2O_3催化剂具有最佳的还原性能,有利于NO氧化为NO_2,进而通过"快速NH_3-SCR"途径提升其催化性能.再者,CeO_2/γ-Al_2O_3催化剂表面酸性位最多,能够促进反应物NH_3分子的吸附与活化,从而提高脱硝性能.最后,CeO_2/γ-Al_2O_3催化剂在H_2O和SO_2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

9.
NO_x是主要的大气污染物之一,对环境和人体健康具有极大的危害.其主要来源之一是柴油机尾气排放,V_2O_5-WO_3/Ti O_2催化剂是现阶段大规模商用的SCR催化剂,但V_2O_5-WO_3/Ti O_2催化剂相对较窄的温度窗口和V_2O_5的生物毒性使得迫切需要新型的环境友好的高效SCR催化剂,其中分子筛因其特殊的孔道结构和催化性能受到广泛的关注.用于SCR过程的分子筛主要包括ZSM-5,Beta,MOR,SAPO-34和SSZ-13等,通常采用Cu,Fe,Mn和Co等过渡金属对其进行改性,通过调变分子筛的表面酸性和氧化还原性能,提高催化剂的SCR活性.Beta分子筛具有三维12元环孔道结构,相对其它分子筛具有较好的水热稳定性,而且制备工艺成熟,价格低廉,因此该类分子筛催化剂在SCR过程中具有很好的应用前景.我们采用离子交换法制备了系列Fe-Beta催化剂,发现将相同质量硝酸铁溶解在不同体积去离子水中,配制成不同浓度的硝酸铁溶液后与分子筛进行离子交换反应,制备得到的Fe-Beta催化剂中Fe的含量和NH_3-SCR催化活性均存在显著差别.在此基础上,我们固定硝酸铁溶液浓度(0.02mol/L),通过增加溶液的体积,分别制备了Fe含量为(2.6,6.3和9)wt%的Fe-Beta分子筛.结果表明,Fe负载量为6.3 wt%时,Fe-Beta催化剂表现出最好的催化活性,NO_x转化率大于80%的温度窗口为202–616°C.虽然三个催化剂在比表面积,孔径和Fe的价态上没有明显的差别,但Fe含量为6.3 wt%的催化剂在保持相对较高的Fe负载量的同时具有更多的孤立Fe~(3+)物种,同时具有较好的NH_3和NO吸附性能以及NO氧化能力,这些特性使得该催化剂相对于其它两个催化剂表现出更高的NH_3-SCR催化活性.当Fe含量增加到9 wt%时,催化剂中FexOy纳米颗粒的含量大幅增加,使得NH_3非选择性氧化能力加强,从而导致高温NH_3-SCR反应活性大幅下降.  相似文献   

10.
氮氧化物(NO_x)是当今大气环境中的主要污染物之一,氨法选择性催化脱硝技术(NH_3-SCR)是最有前景的烟气脱硝技术之一.在众多的NH_3-SCR催化剂中,钛基催化剂由于其较好的热稳定性、抗硫性和环境友好性成为近年来研究的热点.本文以SO_4~(2-).离子作为晶面导向剂,采用一步水热法合成了具有(001)高能晶面的SO_4~(2-).-TiO_2,负载氧化铈后用于SCR反应,并以Ce/P25和Ce/P25-S(浸渍法硫酸化)作为参照对比.研究发现,Ce/TiO_2-001更适合于中、高温NH_3-SCR反应,在290 oC时NO转化率已达99%,并且在290–480 oC范围内均保持99%的脱硝效率.利用X射线衍射、N2吸附脱附、透射电子显微镜、X射线光电子能谱(XPS)、NH3/O2程序升温脱附(TPD)、傅里叶原位红外光谱等技术研究了上述催化剂的表面物化性质与脱硝性能的关系.相比于Ce/P25和Ce/P25-S,Ce/TiO_2-001具有更高的比表面积(107 m~2/g),形成了介孔TiO_2单晶,且晶粒尺寸更小.XPS和NH3-TPD结果表明,Ce/TiO_2-001表面具有丰富的酸性位.硫酸化可以增加催化剂表面的Brosted/Lewis酸性位;同时,(001)高能晶面有利于水分子的解离,从而促进酸性位的产生.O_2-TPD表明,Ce/TiO_2-001催化剂表面存在大量化学吸附氧,这与其一步合成中的硫酸化和(001)高能晶面密切相关,而化学吸附氧在中高温SCR反应中起着重要的作用.通过原位红外分析可得,不同催化剂表面所形成的NO_x吸附物种有所差异,在30°C时,Ce/P25的NO_x吸附物种比较丰富,存在气相NO2、双齿硝酸盐、线性硝酸盐、单齿硝酸盐和桥式硝酸盐,而Ce/P25-S和Ce/TiO_2-001上的NO_x吸附物种则以单齿硝酸盐/亚硝酸盐为主.随着温度的升高,以上催化剂表面的NO_x吸附物种逐渐变为以气相NO2和双齿硝酸盐为主.但同种NO_x吸附物种(气相NO2、双齿硝酸盐)在不同催化剂上的反应活性也有所不同,在250°C时,其顺序为:Ce/TiO_2-001Ce/P25-SCe/P25,与脱硝性能相符.由此可推测,催化剂表面硫酸化和(001)高能晶面的存在有利于提高NO_x中间产物的反应活性,增加反应速率,从而提高脱硝性能.综上所述,硫酸化、高比表面积和(001)高能晶面是Ce/TiO_2-001具有很好脱硝活性的重要原因.硫酸化可以提供丰富的酸性位,增强氨的吸附性能;高比表面积不仅可以负载更多的活性组分,而且有利于活性组分的均匀分散,对降低活性中心的尺寸、防止活性组分烧结团聚有积极作用.而(001)高能晶面则可以促进中、强酸和化学吸附氧的形成,活化NO_x吸附物种,从而提高SCR催化活性  相似文献   

11.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

12.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一. V2O5/TiO2催化剂被广泛应用于氨法选择性还原氮氧化物(NH3-SCR)反应,但该催化剂存在工作温度高(300–400oC)及 SO2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温 SCR催化剂具有重要意义.过渡金属氧化物(如 Fe2O3, MnOx和 CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在 SO2和 H2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注, Yang等首次将 V2O5/TiO2-PILC催化剂应用于 NH3-SCR反应,发现其催化活性高于传统 V2O5/TiO2催化剂.柱撑黏土基催化剂在 NH3-SCR反应中也显示出良好抗硫性能,但 V2O5/TiO2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列 V2O5/TiO2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.
  首先采用离子交换法制备出 TiO2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV2O5/TiO2-PILC催化剂.同时,制备了传统 V2O5/TiO2和 V2O5-MoO3/TiO2催化剂作为对比.活性评价结果显示,4V/TiO2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160oC时, NO转化率可达80%以上.同时,4V/TiO2-PILC催化剂还具有较宽的反应温度窗口,在260–500oC范围内, NO转化率保持在90%以上.向反应体系中加入0.05% SO2和10% H2O后,在低温(160oC以下)时所有催化剂的反应活性都有一定提高,可能是由于 SO2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO2和4V6Mo/TiO2催化剂活性均明显下降,而4V/TiO2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示, SO2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态 SO42–物种形式存在,而在4V/TiO2-PILC催化剂表面离子态 SO42–物种的量最少. X射线光电子能谱及 O2程序升温脱附结果显示,在4V/TiO2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在 SO2气氛下,离子态 SO42–物种在 SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态 SO42–物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

13.
赵欣  黄垒  李红蕊  扈航  韩瑾  施利毅  张登松 《催化学报》2015,(11):1886-1899
选择性催化还原(SCR)是目前固定源及移动源中控制NOx排放最为有效的技术手段之一.工业上应用最广泛的商业SCR催化剂是钒基催化剂.钒基催化剂经钨(钼)改性后具有较好的活性、稳定性和抗水抗硫性能,但在应用过程中仍存在N2选择性较低、活性温度窗口(300–400 oC)较窄及高温下V2O5极易流失等不足,且钨(钼)的价格十分昂贵.因此,用廉价组分提高钒基催化剂的催化性能在实际工业应用中仍具有重要意义.研究发现,很多非贵金属(如Cu, Fe, Mn, Co, Ce, Zr, Nb, Sn, La等)都可以代替钨(钼)用来提高钒基催化剂的选择性、活性温度窗口和(热)稳定性能等.引入的金属通常以氧化物或钒酸盐形式存在,并与活性组分钒物种有很强的相互作用,从而提高钒物种的氧化还原性能及分散度,同时增大表面酸性位数量,抑制锐钛矿向金红石相转变.近年来很多研究发现,经金属改性的钒基催化剂以钒酸盐形式存在时可有效提高催化剂活性和 N2选择性,尤其可显著提高催化剂的(热)稳定性.本文采用浸渍法以廉价易得、储量丰富的过渡金属改性钒基催化剂,得到高度分散的M-V/TiO2(M = Cu, Fe, Mn, Co)脱硝催化剂.结果发现, Cu-V/TiO2和Fe-V/TiO2催化剂表现出较好的催化活性和N2选择性以及优异的稳定性和抗H2O/SO2性能,其中Cu-V/TiO2的工作温度窗口扩展到225–375oC. X射线衍射、拉曼光谱和EDX-mapping表征结果证明,钒物种及引入的金属高度分散在TiO2载体表面,并生成了钒酸盐.氢气程序升温还原结果表明,钒酸盐的形成导致钒物种的还原峰向低温区移动,有利于催化剂氧化还原性能的提升. X射线光电子能谱结果表明, Cu-V/TiO2催化剂表面具有更多的活性氧物种(Oα),且具有较强的电子间相互作用,是SCR活性提高的关键原因之一. NH3程序升温脱附和原位红外光谱实验结果表明,金属的引入可以提高酸量和酸强度; Cu-V/TiO2催化剂表面主要为Lewis酸性位,而Fe-V/TiO2催化剂表面主要为Br?nsted酸性位,两者可能导致不同的SCR反应机理,但均可以提高催化剂在高温下的N2选择性.综上所述,过渡金属改性的钒基催化剂中Cu-V/TiO2具有最好的活性和N2选择性以及较强的稳定性和抗H2O/SO2性能,可能得益于其表面更多的活性氧物种和更多更强的酸性位.  相似文献   

14.
商业选择性催化还原(SCR)催化剂V2O5-WO3(MoO3)/TiO2存在反应温度窗口窄(300–400 oC)和SO3转化率高等缺点,同时占催化剂总质量80%以上的载体TiO2比表面积小,热稳定性差.已有研究发现TiO2-ZrO2固溶体具有较大的比表面积和较强的表面酸性, TiO2与ZrO2的摩尔比为1:1时其比表面积达到最大. CeO2作为SCR催化剂的组成部分,由于其优良的储氧和放氧能力受到广泛关注.研究表明, CeO2-CuO, Ce/Ti-Si-Al和Mo2O3(Co2O3)/Ce-Zr等催化剂具有优良的SCR脱硝活性,同时对V2O5-WO3/TiO2催化剂进行CeO2改性,可提高催化剂的抗SO2中毒能力.实际烟气组分中同时存在SO2和H2O,必定会导致催化剂硫酸盐中毒,而目前对含Ce催化剂的硫酸盐中毒情况研究较少,因此开发新型高效脱硝催化剂十分必要.前期我们研究了xCeO2-3%V2O5/TiO2-ZrO2催化剂,发现CeO2可以显著拓宽脱硝温度窗口,同时增强催化剂酸性位点,但是V2O5含量较高时对环境及人体健康均有较大危害.本文采用共沉淀法制备摩尔比为1:1的TiO2-ZrO2固溶体,用浸渍法负载不同摩尔比的CeO2和1%的V2O5,得到一系列V-xCe/Ti-Zr催化剂,结合X射线衍射(XRD)、比表面积测试(BET)、高分辨透射电镜(HRTEM)、程序升温还原(H2-TPR)、原位漫反射红外光谱(in situ DRIFTS)和程序升温脱附(NH3-TPD)等手段分析催化剂的晶相、活性物质分散程度、氧化还原性质及表面酸性,在200–450 oC范围内考察Ce掺杂催化剂选择性催化还原NOx的脱硝活性,并在250 oC测试催化剂在NH3+NO+O2+SO2+H2O气氛中的脱硝活性,研究催化剂抗硫酸盐中毒能力.研究发现,CeO2掺杂可以拓宽脱硝反应活性窗口, V-0.2Ce/Ti-Zr (摩尔比Ce:Ti =0.2)表现出最优的脱硝性能,在250–350oC范围内脱硝效率均在92%以上,同时与前期研究结果对比发现CeO2含量较高时会导致高温段NOx转化率下降. XRD和HRTEM结果表明,ZrO2的添加可以显著降低载体TiO2的结晶度,复合氧化物TiO2-ZrO2呈无定形态, CeO2高度分散于载体之上,并且催化剂以单晶形式存在. H2-TPR结果表明,CeO2能显著提高催化剂的还原能力,主要的还原反应发生在CeO2的α(200–430oC)和β(430–600 oC)还原峰上,总体而言, V-0.2Ce/Ti-Zr表现出最大的氢气消耗量,即其还原性最强.低V2O5负载有利于较低温度SCR反应, V-0.3Ce/Ti-Zr的钒氧化物还原峰强度最大,其次是V-0.2Ce/Ti-Zr. NH3-TPD测试发现V2O5/TiO2主要存在中强酸及强酸,而V2O5/TiO2-ZrO2主要是弱酸, CeO2负载后随着其含量提高,弱酸强度增加.结合氨气原位漫反射红外光谱发现, CeO2可以增加催化剂Br?nsted和Lewis酸位数量,同时出现反应中间物–NH2, V2O5的负载量较高会抑制1660 cm–1处Br?nsted酸吸收峰的出现. BET结果发现, TiO2-ZrO2和V2O5/Ti-ZrO2比表面积分别可达255.73和143.77 m2/g, V2O5/TiO2仅为66.1 m2/g,表明ZrO2的添加可以显著增大催化剂比表面积,进而有利于SCR反应进行,沉积的氧化物进入载体孔道导致催化剂比表面积降低. V2O5-xCeO2/TiO2-ZrO2表现出较强的抗SO2中毒能力,但是在H2O存在条件下脱硝活性较差,可能是生成的硫酸铵盐及亚硫酸盐阻塞催化剂孔道所致. SO2和H2O停止通入后, V2O5-0.3CeO2/TiO2-ZrO2活性恢复至原有水平, V2O5-0.2CeO2/TiO2-ZrO2恢复至最初的84%.对中毒催化剂进行不同反应温度下的活性测试,发现V2O5-0.2CeO2/TiO2-ZrO2在中温段反应活性显著降低,可能是由于Ce(SO4)2的形成所致,由于V2O5-0.3CeO2/TiO2-ZrO2的Ce含量较高,其在此温度范围内活性依旧较高.两者在高温段NOx转化率均较高,推测是V2O5开始发挥活性组分作用的缘故.  相似文献   

15.
近年来,氨-选择催化还原(NH3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NOx)排放的最有效手段之一.V2O5-WO3/TiO2和V2O5-MoO3/TiO2催化剂在300–400°C范围内表现出优异的脱硝性能和抗H2O和SO2中毒性能,因而被广泛用于NH3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO2到SO3的活性较高、高温下将部分NH3非选择性地氧化成N2O、V2O5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO2)因具有氧化还原性能优异、储/释氧能力强和Ce3+/Ce4+转换容易等优点而广泛用于NH3-SCR反应.然而,单纯CeO2的脱硝性能并不理想.研究表明,将CeO2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH3-SCR催化性能的影响规律尚不明晰.此外,SiO2,γ-Al2O3,ZrO2和TiO2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO2,γ-Al2O3,ZrO2和TiO2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO2/SiO2,CeO2/γ-Al2O3,CeO2/ZrO2和CeO2/TiO2)用于NH3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H2-TPR)以及氨气-程序升温脱附(NH3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO2/γ-Al2O3催化剂的表面Ce3+含量明显大于CeO2/SiO2,CeO2/ZrO2和CeO2/TiO2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH3-SCR反应性能.其次,CeO2/γ-Al2O3催化剂具有最佳的还原性能,有利于NO氧化为NO2,进而通过"快速NH3-SCR"途径提升其催化性能.再者,CeO2/γ-Al2O3催化剂表面酸性位最多,能够促进反应物NH3分子的吸附与活化,从而提高脱硝性能.最后,CeO2/γ-Al2O3催化剂在H2O和SO2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

16.
以Na+型和H+型ZSM-5为载体制备了Fe-ZSM-5催化剂并用于氨选择性催化还原(NH3-SCR)氮氧化物. Fe-H-ZSM-5在新鲜时和750 oC含10%水的空气中老化后,其SCR活性均优于Fe-Na-ZSM-5.表征结果显示, Fe-H-ZSM-5和Fe-Na-ZSM-5的Fe物种分布和酸性位有所不同.高温水热老化后Fe-H-ZSM-5分子筛骨架的脱铝较Fe-Na-ZSM-5严重.水和硫的存在对Fe-H-ZSM-5和Fe-Na-ZSM-5的SCR活性的影响相似,即降低了低温活性,略提高了高温活性. Fe-Na-ZSM-5表现出比Fe-H-ZSM-5更好的抗碳氢中毒性能.这两种催化剂的SO2和碳氢中毒是可逆的.  相似文献   

17.
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt%vanadia. A special heat treatment was used in the calcination to maintain the large sur‐face area and high dispersion of vanadium species. This catalyst was compared to a common V2O5‐TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new cata‐lyst has a surface area of 117.7 m2/g, which was 38%higher than the traditional V2O5‐TiO2 catalyst. The selective catalytic reduction (SCR) performance demonstrated that the new catalyst had a wid‐er temperature window and better N2 selectivity compared to the traditional one. The NO conver‐sion was>80%from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V‐O‐V linkages on the catalyst prepared by the traditional method. The amount of V‐O‐Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.  相似文献   

18.
商业选择性催化还原(SCR)催化剂成分主要有 V2O5, WO3和 TiO2,但适用温度窗口较窄(300?400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯 TiO2和 ZrO2载体, TiO2-ZrO2具有较高的热稳定性以及较多的酸位,虽然有关 TiO2-ZrO2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对 NH3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同 NH3-SCR脱硝催化剂的起活温度不同.同时, NH3和 NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究 NH3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的 TiO2-ZrO2固溶体,并分步浸渍不同质量比的 WO3和1%V2O5,最终得到一系列1%V2O5-x%WO3/TiO2-ZrO2.然后通过 X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了 WO3和 ZrO2对催化性能的影响以及 V2O5-WO3/TiO2-ZrO2催化剂的反应机理. N2物理吸附结果表明, WO3的添加使得催化剂孔结构的热稳定性有所提高,同时随着 WO3含量增加催化剂的比表面积逐渐减小,但仍高于 V2O5/TiO2-ZrO2催化剂; ZrO2对催化剂比表面积增大效果比较明显.结合 XRD结果表明, WO3能促进金属氧化物在载体上的分散;相比于 V2O5-WO3/TiO2催化剂, ZrO2有利于活性组分的分散负载.比较系列 V2O5-x%WO3/TiO2-ZrO2的氨吸附情况,发现 WO3的添加增加了 Br?nsted酸的稳定性,其中以9%WO3的效果最显著.催化剂氨吸附中间物种(–NH2)的发现,证实了 WO3添加促进了 NH3的活化,有利于脱硝反应的进行. SCR反应结果显示, V2O5-9%WO3/TiO2-ZrO2催化剂在300–450oC时 NOx转化效率最优,并发现 O2的存在促进了 NOx的转化.采用in situ DRIFTS研究了 V2O5-x%WO3/TiO2-ZrO2催化剂脱硝机理,300和350oC时 NH3, NO, NO + O2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为 Lewis酸中心, Br?nsted酸中心的 NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与 NH3相比, NO只能以 NO2的形式弱吸附在催化剂表面.因此,该催化剂遵循 Eley-Ridel脱硝机理.而 V2O5-9%WO3/TiO2-ZrO2催化剂具有相对较高的脱硝效率,因此用来着重研究 NH3-SCR机理.在 NH3吸附过程中, NH3(1204,1602,3156,3264,3347 cm?1)和活性中产物 NH2(1550 cm?1)在催化剂表面的吸附(恒温300oC)是稳定的;随后通入 NO + O2时, NH3吸附过程中的所有吸收峰(包括 NH2)均逐渐减小(NH3吸附态与 NO结合后分解为 N2和 H2O),同时出现 H2O的振动峰,这证明了 V2O5-x%WO3/TiO2-ZrO2催化剂的脱硝反应过程.各类气体吸附情况表明, NO在商业催化剂的吸附状态与 V2O5-x%WO3/TiO2-ZrO2催化剂相同;但 NH3吸附结果表明, Br?nsted酸中心和 Lewis酸中心都是催化剂的活性中心; NO + O2的通入使得催化剂表面的 NH3和 NH4+都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的 NOx脱除路径.通过in situ DRIFTS比较 O2的存在对脱硝反应产生的不同影响来确定 O2的作用.两类催化剂上 O2均参与了 H2O的形成,促进了催化反应的完成;当 O2不存在时, NO的还原受到了极大地抑制,同时也未出现 H2O;两者的脱硝效率大大降低. H2-TPR和 NH3-TPR结果进一步证实 O2的作用主要是氧化 NO及参与催化过程 H2O的形成.  相似文献   

19.
采用共沉淀法制备质量比为1:1的MOx-SiO2(M=Ce,Zr,Al)复合氧化物,以此为载体采用浸渍法制备了铂基氧化型催化剂.考察了该系列催化剂在模拟柴油车尾气条件下,经SO2硫化前后对C3H8和CO的氧化性能.用X射线衍射(XRD)、低温N2吸附-脱附、氨气/氧气/二氧化碳程序升温脱附(NH3/O2/CO2-TPD)和X射线光电子能谱(XPS)等手段进行了表征.NH3-TPD证实催化剂表面存在多种酸中心,硫化后催化剂表面中强酸中心增多.O2-TPD证实催化剂表面存在α和β氧物种,硫化后催化剂表面氧脱附量减少.其中Pt/Al2O3-SiO2表面酸性最弱和表面氧脱附量最大.XPS结果表明新鲜催化剂经硫化后会使催化剂表面Pt的结合能降低.活性测试结果表明,三种催化剂对CO和C3H8的催化氧化活性均较好,其中Pt/ZrO2-SiO2抗SO2中毒性能最佳,具有良好的应用前景.  相似文献   

20.
采用浸渍法对无定形ZnO分别用稀H2SO4和(NH4)2S2O8溶液处理, 制备了SO42-/ZnO和S2O82-/ZnO固体酸. 通过固体离子交换法制备了Cu(Ⅰ)/SO42-/ZnO和Cu(Ⅰ)/S2O82-/ZnO两种催化剂, 并采用XRD, FTIR, TPD和TPR等进行了表征. 研究结果表明, 用稀H2SO4和(NH4)2S2O8溶液分别浸渍处理无定形ZnO, 经过500-600 ℃高温焙烧后得到的SO42-/ZnO和S2O82-/ZnO固体酸表面形成了Zn3O(SO4)2物种; py-FTIR结果表明, 两者均具有B酸中心和L酸中心, 进一步的NH3-TPD研究结果证明, 制备的固体酸NH3脱附峰均出现在543 ℃附近, 属于高强度固体酸. 结构分析认为, 由于SO42-强烈的电子诱导作用, SO42-和ZnO形成的桥式配位物种产生了B酸中心和L酸中心, 而其螯合配位形成的物种没有酸性. SO42-/ZnO和S2O82-/ZnO固体酸与CuCl进行离子交换所制备的Cu(Ⅰ)/SO42-/ZnO和Cu(Ⅰ)/S2O82-/ZnO催化剂的Cu(Ⅰ)易于还原, 对甲醇氧化羰基化合成碳酸二甲酯(DMC)表现出较高的活性和选择性, DMC选择性为98.3%, 时空收率可达到1.9 g(g·h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号