首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Liu W  Tan X  Yin K  Liu H  Tang X  Shi J  Zhang Q  Uher C 《Physical review letters》2012,108(16):166601
Mg(2)Si and Mg(2)Sn are indirect band gap semiconductors with two low-lying conduction bands (the lower mass and higher mass bands) that have their respective band edges reversed in the two compounds. Consequently, for some composition x, Mg(2)Si(1-x)Sn(x) solid solutions must display a convergence in energy of the two conduction bands. Since Mg(2)Si(1-x)Sn(x) solid solutions are among the most prospective of the novel thermoelectric materials, we aim on exploring the influence of such a band convergence (valley degeneracy) on the Seebeck coefficient and thermoelectric properties in a series of Mg(2)Si(1-x)Sn(x) solid solutions uniformly doped with Sb. Transport measurements carried out from 4 to 800 K reveal a progressively increasing Seebeck coefficient that peaks at x=0.7. At this concentration the thermoelectric figure of merit ZT reaches exceptionally large values of 1.3 near 700 K. Our first principles calculations confirm that at the Sn content x≈0.7 the two conduction bands coincide in energy. We explain the high Seebeck coefficient and ZT values as originating from an enhanced density-of-states effective mass brought about by the increased valley degeneracy as the two conduction bands cross over. We corroborate the increase in the density-of-states effective mass by measurements of the low temperature specific heat. The research suggests that striving to achieve band degeneracy by means of compositional variations is an effective strategy for enhancing the thermoelectric properties of these materials.  相似文献   

2.
Firstly, tellurium (Te) nanorods with a high Seebeck coefficient have been integrated into a conducting polymer PEDOT/PSS to form PEDOT/PSS/Te composite films. The Seebeck coefficient of the PEDOT/PSS/Te (90 wt.%) composite films is ~191 μV/K, which is about 13 times greater than that of pristine PEDOT/PSS. Then, H2SO4 treatment has been used to further tune the thermoelectric properties of the composite films by adjusting the doping level and increasing the carrier concentration. After the acid treatment, the electrical conductivity of the composite films has increased from 0.22 to 1613 S/cm due to the removal of insulating PSS and the structural rearrangement of PEDOT. An optimized power factor of 42.1 μW/mK2 has been obtained at room temperature for a PEDOT/PSS/Te (80 wt.%) sample, which is about ten times larger than that of the untreated PEDOT/PSS/Te composite film.  相似文献   

3.
彭华  王春雷  李吉超  张睿智  王洪超  孙毅 《中国物理 B》2011,20(4):46103-046103
The full-potential linear augmented plane wave method based on density functional theory is employed to investigate the electronic structure of BaSi 2 . With the constant relaxation time and rigid band approximation,the electrical conductivity,Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory,further evaluated as a function of carrier concentration. We find that the Seebeck coefficient is more anisotropic than electrical conductivity. The figure of merit of BaSi 2 is predicted to be quite high at room temperature,implying that optimal doping may be an effective way to improve thermoelectric properties.  相似文献   

4.
采用金属有机物化学气相沉积技术生长了不同掺杂浓度的GaN薄膜, 并且通过霍尔效应测试和塞贝克效应测试, 表征了室温下GaN薄膜的载流子浓度、迁移率和塞贝克系数. 在实验测试的基础上, 计算了GaN薄膜的热电功率因子, 并且结合理论热导率确定了室温条件下GaN薄膜的热电优值(ZT). 研究结果表明: GaN薄膜的迁移率随着载流子浓度的增加而减小, 电导率随着载流子浓度的增加而增加; GaN 薄膜材料的塞贝克系数随载流子浓度的增加而降低, 其数量级在100–500 μV/K范围内; GaN薄膜材料在载流子浓度为1.60×1018 cm-3时, 热电功率因子出现极大值4.72×10-4 W/mK2; 由于Si杂质浓度的增加, 增强了GaN薄膜中的声子散射, 使得GaN薄膜的热导率随着载流子浓度的增加而降低. GaN薄膜的载流子浓度为1.60×1018 cm-3时, 室温ZT达到极大值0.0025.  相似文献   

5.
黄平  游理  梁星  张继业  骆军 《物理学报》2019,68(7):77201-077201
层状氧硫族化合物由于其本征的低晶格热导率和可观的热电性能吸引了广泛关注,其中以BiCuSeO化合物的热电性能最为优异.但是,其同晶型化合物BiCuTeO,由于带隙较小且存在大量本征Cu空位,导致载流子浓度较高,热电性能较差,从而研究较少.针对BiCuTeO存在的上述问题,本文利用Se替代部分Te,以期能够展宽带隙并减少Cu空位,提高其热电性能.采用固相反应结合快速热压烧结制备了BiCuTe_(1-x)Se_xO(x=0, 0.1, 0.2, 0.3和0.4)块体热电材料,并系统地研究了该体系的电热输运性能.研究结果表明,利用Se替代Te,可以使BiCuTeO导电层化学键强度增加、带隙增大、载流子有效质量增加以及载流子散射增强,从而导致载流子浓度和迁移率同时降低,进而电导率随着Se含量增加而剧烈降低, Seebeck系数则显著增大.由于综合电输运性能恶化,功率因子随着Se含量增加而减小,导致热电优值zT随着Se含量增加而降低.最终,Se含量为x=0.1的样品,在室温和723 K时的zT值分别达到约0.3和0.7,仍然在较宽温区内保持较高的zT值.由于Se替代Te改变了BiCuTeO的能带结构,通过载流子浓度优化,有望进一步提高其热电性能.  相似文献   

6.
The skutterudites are an excellent candidate for thermoelectric materials used in mechanic free heat pump and electric generator. Using the ab initio density functional theory we have calculated the electronic band structure and thermoelectric properties of skutterudite RuSb2Te. RuSb2Te compound belongs to an indirect band gap semiconductor. The density of states has a sharp upturn at the conduction band edge and is very low at the valence band top. This feature suggests that Seebeck coefficient is larger for n doped than for p doped RuSb2Te compound. The calculated Seebeck coefficient confirms this trend. It is in a qualitative agreement with the experiments if the temperature is not too high.  相似文献   

7.
Ternary AgSbTe2 materials are frequently reported to show a promising thermoelectric performance, due to the intrinsically low lattice thermal conductivity and complex valence band structure. However, stoichiometric AgSbTe2 is found to be thermodynamically unstable and would partially decompose into Ag2Te and Sb2Te3 during thermal cycling. Instead, Ag0.366Sb0.558Te is the composition for stabilizing the single-phase according to the Ag2Te-Sb2Te3 phase diagram, while the thermoelectric transport properties have rarely been reported and are the focus of this work. Sn/Sb substitution is found to effectively increase not only the carrier concentration from ≈5 × 1019 cm−3 to ≈4 × 1021 cm−3, but also the density-of-states effective mass, leading to an enhanced Seebeck coefficient along with a decreased carrier mobility. Single parabolic band (SPB) model with acoustic phonon scattering enables a good understanding on the charge transport. The increased carrier concentration effectively suppresses the bipolar effect at high temperatures. As a result, a peak zT of ≈1.3 and an average of ≈0.9 are achieved.  相似文献   

8.
张玉  吴立华  曾李骄开  刘叶烽  张继业  邢娟娟  骆军 《物理学报》2016,65(10):107201-107201
相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 ≤x ≤ 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.  相似文献   

9.
Thermoelectric power generators require high-efficiency thermoelectric materials to transform waste heat into usable electrical energy. An efficient thermoelectric material should have high Seebeck coefficient and excellent electrical conductivity as well as low thermal conductivity. Graphene, the first truly 2D nanomaterial, exhibits unique properties which suit it for use in thermoelectric power generators, but its application in thermoelectrics is limited by the high thermal conductivity and low Seebeck coefficient resulting from its gapless spectrum. However, with the possibility of modification of graphene's band structure to enhance Seebeck coefficient and the reduction of its thermal conductivity, it is an exciting prospect for application in thermoelectric power generation. This article examines the electronic, optical, thermal, and thermoelectric properties of graphene systems. The factors that contribute to these material properties in graphene systems like charge carriers scattering mechanisms are discussed. A salient aspect of this article is a synergistic perspective on the reduction of thermal conductivity and improvement of Seebeck coefficient of graphene for a higher thermoelectric energy conversion efficiency. In this regard, the effect of graphene nanostructuring and doping, forming of structural defects, as well as graphene integration into a polymer matrix on its thermal conductivity and Seebeck coefficient is elucidated.  相似文献   

10.
张飞鹏  张静文  张久兴  杨新宇  路清梅  张忻 《物理学报》2017,66(24):247202-247202
采用密度泛函理论计算分析的方法研究了Ca位Sr掺杂的CaMnO_3基氧化物的电子性质和电性能;采用柠檬酸溶胶-凝胶法结合陶瓷烧结制备工艺制备了Ca位Sr掺杂的CaMnO_3基氧化物块体试样,分析研究了所得试样的热电传输性能.结果表明,Sr掺杂CaMnO_3氧化物仍然呈间接带隙型能带结构,带隙宽度由0.756 eV减小到0.711 eV.Sr掺杂CaMnO_3氧化物费米能级附近的载流子有效质量均得到调控,载流子浓度也有所增大.Sr比Ca具有更强的释放电子能力,其掺杂在CaMnO_3氧化物中表现为n型.Sr掺杂的CaMnO_3基氧化物材料电阻率大幅度降低,Seebeck系数绝对值较本征CaMnO_3基氧化物材料有一定程度的增大,Sr掺杂量为0.06和0.12的Ca_(1-x)Sr_xMnO_3(x=0.06,0.12)试样,其373 K的电阻率分别降低至本征CaMnO_3基氧化物材料的25%和21%,其373 K的Seebeck系数绝对值分别是本征CaMnO_3基氧化物材料的112.9%和111.1%,Sr掺杂有效提高了CaMnO_3基氧化物材料的热电性能.  相似文献   

11.
Thermoelectric properties of pure,Cd-and In-doped ZnSb are studied by first principles calculations of electronic structures and the semi-classical Boltzmann transport theory.The doping of Cd or In at the Zn lattice site slightly increases the lattice parameters due to the larger atomic radii of Cd and In compared with that of Zn.Cd or In doping also apparently increases the interatomic distances between the dopant atoms and the surrounding atoms.The power factor of n-type ZnSb is much larger than that of p-type ZnSb,indicating that n-type ZnSb has better thermoelectric performance than p-type ZnSb.After the doping of Cd or In,the power factor reduces mainly due to the decrease of the electrical conductivity.The temperature dependences of the Seebeck coefficient and the power factor of pure,Cd-and In-doped ZnSb are related to carrier concentrations.  相似文献   

12.
孙政  陈少平  杨江锋  孟庆森  崔教林 《物理学报》2014,63(5):57201-057201
热电材料是一类能够实现热与电相互转换的功能材料,在制冷和发电领域极具应用潜力.本文采用金属Sb元素非等电子替换Cu3Ga5Te9化学式中的Cu和Te,观察到材料Seebeck系数和电导率提升的现象.这些电学性能的改善与载流子浓度和有效质量的增大及迁移率基本维持不变有关.载流子浓度的提高是由于Sb原子占位在Te晶格位置后费米能级进入到价带所产生的空穴掺杂效应所致,同时也与Cu含量减少后铜空位(V-1Cu)浓度增大相关联.另外,非等电子替换后,阴离子(Te2-)移位导致了晶格结构缺陷参数u和η的改变,其改变量fiu和fiη与材料晶格热导率(κL)的变化密切相关.在766 K时,适量的Sb替换量使材料的最大热电优值(ZT)达到0.6,比Cu3Ga5Te9提高了近25%.因此,通过选择替换元素、被替换元素及替换量有效地调控了材料的电学及热学性能,在黄铜矿结构半导体中实现了非等电子元素替换改善热电性能的思想.  相似文献   

13.
朱岩  张新宇  张素红  马明臻  刘日平  田宏燕 《物理学报》2015,64(7):77103-077103
本文基于第一性原理采用全电势线性缀加平面波方法和波尔兹曼理论运算了在静水压下Mg2Si的电子和热电性能. 研究发现, 对于n型载流子控制Mg2Si输运性质, 应变达到0.02时, 室温情况下, 热电性能参数得到了明显提高, 其塞贝克系数增幅为26%, 功率因数增幅47%; 高温时, 功率因数增幅45%. 而对于主要载流子为空穴时, 其热电系数最值出现在应变为0.01时. 但其数值与未施加静水压的结构相比提高不多, 表明对于p型Mg2Si半导体应变对其输运性能的影响不大. 并且结合电子能带结构图解释这些现象.  相似文献   

14.
The effect of gallium on the temperature dependences (5 K ≤ T ≤ 300 K) of Seebeck coefficient α, electrical conductivity σ, thermal conductivity k, and thermoelectric efficiency Z of mixed p-(Bi0.5Sb0.5)2Te3 semiconductor single crystals is studied. The hole concentration decreases upon gallium doping; that is, gallium causes a donor effect. The Seebeck coefficient increases anomalously, i.e., much higher than it should be at the detected decrease in the hole concentration. This leads to an enhancement of the thermoelectric power. The observed changes in the Seebeck coefficient indicate a noticeable gallium-induced change in the density of states in the valence band.  相似文献   

15.
Thermoelectric power factor of a material significantly relies on its electrical conductivity, thermal conductivity, and Seebeck coefficient. Herein, an attempt has been made to enhance the thermoelectric power factor of In2Te3 thin films by tuning their Te composition and via Se doping. The optimum Se-doping concentration and Te composition enhanced the power factor of pristine In2Te3 films by 14 and 7.4 times, respectively. The modified chemical composition, structural characteristics, and surface morphological features of In2Te3 films are observed to be pivotal in improving their thermoelectric power factor. Overall, this study offers a facile approach to control the thermoelectric power factor of In2Te3 thin films which is significant for their futuristic applications.  相似文献   

16.
孟代仪  申兰先  晒旭霞  董国俊  邓书康 《物理学报》2013,62(24):247401-247401
采用Sn自熔剂法制备了具有n型传导的Ⅷ型Ba8Ga16-xGexSn30 (0 ≤ x ≤ 1.0)单晶笼合物,并对其结构和热电特性进行研究. 研究结果表明:Ge在单晶中的实际含量较少,随着掺杂量的增加样品的晶格常数略有减小,Ge掺杂后样品的载流子浓度较掺杂前低,迁移率增加;所有样品的Seebeck系数均为负值,且绝对值较未掺杂样品低,但Ge掺杂后样品的电导率提高了62%;x=0.5的样品在500 K附近取得最大ZT值1.25. 关键词: Ⅷ型笼合物 n型传导 热电性能  相似文献   

17.
The effect of Ga doping on the temperature dependences (5 K ≤ T ≤ 300 K) of the Seebeck coefficient α, electrical conductivity σ, thermal conductivity coefficient κ, and thermoelectric figure of merit Z of p-(Bi0.5Sb0.5)2Te3 single crystals has been investigated. It has been shown that, upon Ga doping, the hole concentration decreases, the Seebeck coefficient increases, the electrical conductivity decreases, and the thermoelectric figure of merit increases. The observed variations in the Seebeck coefficient cannot be completely explained by the decrease in the hole concentration and indicate a noticeable variation in the density of states due to the Ga doping.  相似文献   

18.
Pb- or Sn-doped Bi88Sb12 alloys were prepared by direct melting, quenching, and annealing. The Bi-Sb alloy phase was predominant in all samples. Pb or Sn atoms were distributed almost uniformly in Bi88Sb12, while some segregation was confirmed at the grain boundaries when Pb or Sn was involved heavily. The thermoelectric properties of these doped materials were investigated by measuring the Hall coefficient, electrical resistivity, and Seebeck coefficient between 20 K and 300 K. The Hall and Seebeck coefficients of Pb- or Sn-doped samples were positive at low temperatures, indicating that the doping element acted as an acceptor. Temperatures resulting in positive Hall and Seebeck coefficients further increased with increasing doping amount and with respect to the annealing process. As a result, a large power factor of 1.2 W/mK2 could be obtained in the 3-at% Sn-doped sample at 220 K, with a large positive Seebeck coefficient.  相似文献   

19.
碲化铋禁带宽度非常窄而具有高电导率和塞贝克系数,同时具有低热导率,成为已知室温下优值系数最高的热电材料。已有研究表明,纳米薄膜和超晶格是进一步提高材料热电性能的可行途径。因此超快研究碲化铋纳米薄膜中载能子间的相互作用过程对开发高性能热电材料有重要意义。本文采用飞秒激光泵浦-探测技术,实验研究了沉积在硅基底上厚度为100 nm碲化铋薄膜中各载能粒子的相互作用过程。通过改变延迟时间步长,分别观察到价带电子被光子激发跃迁至导带,激发电子在导带内与声子的能量弛豫及导带电子与空穴复合跃迁至价带,并将能量传递给声子导致声子温度升高的过程。此外,还观察到热应力产生的声波,并据此得到了碲化铋薄膜中纵波声速为2649 m s-1。  相似文献   

20.
First-principles calculations for intrinsic and Zn-doped In0.25Ga0.75As are performed based on density functional theory to study the influence of Zn doping on electronic and optical properties. The band structure, density of state, Mulliken population, dielectric function, complex refractive index, absorption coefficient and reflectivity of In0.25Ga0.75As are calculated. Results show that the Fermi levels of two Zn-doped models enter into the valence bands and Zn atom is more easily to replace In atom than Ga atom. The lattice constant of In0.2344Ga0.75Zn0.0156As reduced after optimization, while that of In0.25Ga0.7344Zn0.0156As increased to the contrary. The Mulliken bond population shows that the doping Zn atoms can enlarge the strength of In–As and Ga–As polar covalent bonds. Furthermore, the calculated absorption coefficient and reflectivity are used to characterize the performance of photoemission, indicates that the photoresponses of Zn-doped models are better than that of the intrinsic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号