首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于非局部应变梯度理论,建立了一种具有尺度效应的高阶剪切变形纳米梁的力学模型.其中,考虑了应变场和一阶应变梯度场下的非局部效应.采用哈密顿原理推导了纳米梁的控制方程和边界条件,并给出了简支边界条件下静弯曲、自由振动和线性屈曲问题的纳维级数解.数值结果表明,非局部效应对梁的刚度产生软化作用,应变梯度效应对纳米梁的刚度产生硬化作用,梁的刚度整体呈现软化还是硬化效应依赖于非局部参数与材料特征尺度的比值.梁的厚度与材料特征尺度越接近,非局部应变梯度理论与经典弹性理论所预测结果之间的差异越显著.  相似文献   

2.
基于非局部应变梯度理论,建立了一种具有尺度效应的高阶剪切变形纳米梁的力学模型. 其中,考虑了应变场和一阶应变梯度场下的非局部效应. 采用哈密顿原理推导了纳米梁的控制方程和边界条件,并给出了简支边界条件下静弯曲、自由振动和线性屈曲问题的纳维级数解. 数值结果表明,非局部效应对梁的刚度产生软化作用,应变梯度效应对纳米梁的刚度产生硬化作用,梁的刚度整体呈现软化还是硬化效应依赖于非局部参数与材料特征尺度的比值. 梁的厚度与材料特征尺度越接近,非局部应变梯度理论与经典弹性理论所预测结果之间的差异越显著.  相似文献   

3.
FRP加固钢筋混凝土梁界面开裂分析   总被引:1,自引:0,他引:1  
应用理论分析及有限元模拟和模型试验相结合的方法分析了FRP加固钢筋混凝土(RC)梁界面的开裂破坏规律。研究结果表明:FRP加固RC梁界面开裂可以应用断裂力学的方法解析,理论分析结论与有限元模拟结果一致。在FRP的剥离角度较大时界面是Ⅰ型和Ⅱ型混合开裂;同时考虑到混凝土剪切裂缝上下错动的尺寸与构件的尺寸相比很小,FRP-RC梁界面主要表现为Ⅱ型断裂。界面的应力强度因子随着加载的增加分为三个发展阶段,分别以混凝土开裂和钢筋屈服为分界点,界面的临界应力强度因子约为5.91MPa·m0.5。并结合试验给出了FRP的极限剥离应变,在工程应用中控制FRP应变在剥离应变以内可以有效地避免界面开裂破坏的发生。  相似文献   

4.
徐巍  王立峰  蒋经农 《力学学报》2015,47(5):751-761
基于应变梯度理论建立了单层石墨烯等效明德林(Mindlin) 板动力学方程,推导了四边简支明德林中厚板自由振动固有频率的解析解. 提出了一种考虑应变梯度的4 节点36 自由度明德林板单元,利用虚功原理建立了单层石墨烯的等效非局部板有限元模型. 通过对石墨烯振动问题的研究,验证了应变梯度有限元计算结果的收敛性. 运用该有限元法研究了尺寸、振动模态阶数以及非局部参数对石墨烯振动特性的影响. 研究表明,这种单元能够较好地适用于研究考虑复杂边界条件石墨烯的尺度效应问题. 基于应变梯度理论的明德林板所获得石墨烯的固有频率小于基于经典明德林板理论得到的结果. 尺寸较小、模态阶数较高的石墨烯振动尺度效应更加明显. 无论采用应变梯度理论还是经典弹性本构关系,考虑一阶剪切变形的明德林板模型预测的固有频率低于基尔霍夫(Kirchho) 板所预测的固有频率.   相似文献   

5.
锚固体的受力特征及其影响因素是锚固体设计的重要依据,直接影响锚固效果。传统的经典弹性理论没有考虑应变梯度的影响。偶应力理论引进弯曲曲率,考虑了弯曲效应对介质变形特性的影响。基于偶应力理论,建立了平面应变问题的有限元计算模型,研究锚固体锚固段界面上的剪应力分布、锚固体轴力分布、偶应力的尺度效应以及弹性模量和围压对锚固力的影响,并将偶应力理论的计算结果和经典弹性理论的计算结果进行了比较。结果表明,在偶应力理论下,锚固体锚固段界面的剪应力有所减小,特别是峰值处的剪应力减小明显;岩土的弹性模量越大,锚固界面局部剪应力越大;锚固力随着围压的增大而增大,偶应力尺度效应明显。  相似文献   

6.
应变梯度理论自然邻近混合伽辽金法   总被引:1,自引:1,他引:0  
应变梯度理论考虑了位移二阶梯度对应变能密度函数的贡献,在本构关系中引入了与材料微结构特征尺寸相关的参数,可以唯象地解释尺度效应现象。基于约束变分原理,把位移与位移一阶梯度作为独立场变量,使用拉格朗日乘子法引入二者的协调关系,放松对试探函数连续性与完备性的要求,建立了二维及三维问题的应变梯度理论自然邻近混合伽辽金法。通过算例对方法的计算性能进行了考查,结果表明,该方法具有良好的数值精度,能够模拟材料力学性能的尺度效应。  相似文献   

7.
挠曲电效应是应变梯度与电极化的耦合,它存在于所有的电介质材料中。在纳米电介质结构的挠曲电效应研究中,应变梯度弹性对挠曲电响应的影响一直以来被低估甚至被忽略了。根据广义应变梯度理论,应变梯度弹性中独立的尺度参数只有三个,而文献中所采用的一个或两个尺度参数的应变梯度理论只是它的简化形式。基于该理论,论文建立了考虑广义应变梯度弹性的三维电介质结构的理论模型,并以一维纳米梁为例研究了其弯曲问题的挠曲电响应及其能量俘获特性。结果表明,纳米梁的挠曲电响应存在尺寸效应,并且弹性应变梯度会影响结构挠曲电的尺寸效应,特别是当结构的特征尺寸低于尺度参数时。论文的工作为更进一步理解纳米尺度下的挠曲电机理和能量俘获特性提供理论基础和设计依据。  相似文献   

8.
为了在气炮上实现应变率为105~106 s-1的复杂加载技术研究,采用自行研制的拉格朗日程序MLEP(multi-material Lagrangian elastic-plastic)对Al-Cu-W材料体系的阻抗梯度飞片复杂加载不锈钢靶板进行数值模拟,计算设计并分析了阻抗梯度飞片的厚度和密度分布指数对靶板压力、速度和应变率峰值等波形的影响。结果表明:密度指数分布越大,加载时间越短,加载后期的压力、速度和应变率峰值曲线更陡峭;同时, 为了避免靶板/LiF窗口界面反射的稀疏波早于阻抗梯度飞片后界面反射的稀疏波达到碰撞面位置,计算设计中还考虑了飞片厚度的影响。此外,对基于理论设计的阻抗梯度飞片进行了动态考核实验,实验结果基本反映了预期的设计,为材料强度的测量奠定了基础。  相似文献   

9.
基于微裂纹界面摩擦生热的点火模型   总被引:1,自引:0,他引:1  
开展了基于微裂纹界面摩擦生热的细观点火模型研究,采用有限元方法对包含化学反应放热和摩擦生热的热传递方程进行了离散求解,计算模型中考虑了炸药颗粒熔化对升温过程的影响。着重分析了点火模型中主要参数(热点尺度、应变率和界面压力)对炸药点火的影响规律。数值研究表明,随着热点尺度的增大,热点的温度上升越快,越容易发生点火;应变率越大或者界面压力越高,热量积累越快,炸药越容易点火。  相似文献   

10.
应变梯度理论进展   总被引:16,自引:0,他引:16  
陈少华  王自强 《力学进展》2003,33(2):207-216
应变梯度理论是近10年来为解释材料在微米尺度下的尺寸效应现象而发展起来的一种新理论.首先综述了应变梯度理论近年的发展及其对材料力学行为研究方面的进展.其次主要介绍了不含高阶应力的一类应变梯度理论及其应用;最后对应变梯度理论的发展做了展望.   相似文献   

11.
Classical elastoplastic theory predicts that the rotation angle near an interface between two mismatched materials is discontinuous under shear. The strain gradient effects, however, can be significant within a narrow region near the interface. This can be shown by application of the strain gradient plasticity. The matching expansion method was used to obtain asymptotic results. Comparison is then made with those found numerically for the interface torsion problem of a two-layered cylindrical tube. The strain gradient plasticity theory solution differs from that of the classical elastoplastic theory solution, depending on the properties aside from the interface behavior and the loading mode. A failure criterion is also proposed that accounts for the strain gradients.  相似文献   

12.
Biaxial strain and pure shear of a thin film are analysed using a strain gradient plasticity theory presented by Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52, 1379–1406]. Constitutive equations are formulated based on the assumption that the free energy only depends on the elastic strain and that the dissipation is influenced by the plastic strain gradients. The three material length scale parameters controlling the gradient effects in a general case are here represented by a single one. Boundary conditions for plastic strains are formulated in terms of a surface energy that represents dislocation buildup at an elastic/plastic interface. This implies constrained plastic flow at the interface and it enables the simulation of interfaces with different constitutive properties. The surface energy is also controlled by a single length scale parameter, which together with the material length scale defines a particular material.Numerical results reveal that a boundary layer is developed in the film for both biaxial and shear loading, giving rise to size effects. The size effects are strongly connected to the buildup of surface energy at the interface. If the interface length scale is small, the size effect vanishes. For a stiffer interface, corresponding to a non-vanishing surface energy at the interface, the yield strength is found to scale with the inverse of film thickness.Numerical predictions by the theory are compared to different experimental data and to dislocation dynamics simulations. Estimates of material length scale parameters are presented.  相似文献   

13.
It is shown in this paper that interfacial effects have a profound impact on the scale-dependent yield strength and strain hardening rates (flow stress) of metallic thin films on elastic substrates. This is achieved by developing a higher-order strain gradient plasticity theory based on the principle of virtual power and the laws of thermodynamics. This theory enforces microscopic boundary conditions at interfaces which relate a microtraction stress to the interfacial energy at the interface. It is shown that the film bulk length scale controls the size effect if a rigid interface is assumed whereas the interfacial length scale dominates if a compliant interface is assumed.  相似文献   

14.
Failure in micro-reinforced composites is investigated numerically using the strain-gradient plasticity theory of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids 52 (6) 1379–1406] in a plane strain visco-plastic formulation. Bi-axially loaded unit cells are used and failure is modeled using a cohesive zone at the reinforcement interface. During debonding a sudden stress drop in the overall average stress–strain response is observed. Adaptive higher-order boundary conditions are imposed at the reinforcement interface for realistically modeling the restrictions on moving dislocations as debonding occurs. It is found that the influence of the imposed higher-order boundary conditions at the interface is minor. If strain-gradient effects are accounted for a void with a smooth shape develops at the reinforcement interface while a smaller void having a sharp tip nucleates if strain-gradient effects are excluded. Using orthogonalization of the plastic strain gradient with three corresponding material length scales it is found that, the first length scale dominates the evaluated overall average stress–strain response, the second one only has a small effect and the third one has an intermediate effect. Finally, studies of reinforcement having elliptical cross-sections show rather significant gradients of stress which is not seen for the corresponding circular cross-sections. Also, an increased drop in the overall load carrying capacity is observed for cross-sections elongated perpendicular to the principal tensile direction compared to the corresponding circular cross-sections.  相似文献   

15.
A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter version and the multiparameter theory, and significant differences between the predictions of the two models are reported. It is shown that modeling fiber elasticity is important when using the present theories. A significant stiffening effect when compared to conventional models is predicted, which is a result of a significant decrease in the level of plastic strain. Moreover, it is shown that the relative stiffening effect increases with fiber volume fraction. The higher-order nature of the theories allows for different higher-order boundary conditions at the fiber-matrix interface, and these boundary conditions are found to be of importance. Furthermore, the influence of the material length parameters on the stresses along the interface between the fiber and the matrix material is discussed, as well as the stresses within the elastic fiber which are of importance for fiber breakage.  相似文献   

16.
Strain-gradient plasticity theories are reviewed in which some measure of the plastic strain rate is treated as an independent kinematic variable. Dislocation arguments are invoked in order to provide a physical basis for the hardening at interfaces. A phenomenological, flow theory version of gradient plasticity is constructed in which stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition. Plastic work is also done at internal interfaces and a yield surface is postulated for the work-conjugate stress quantities at the interface. Thereby, the theory has the potential to account for grain size effects in polycrystals. Both the bulk and interfacial stresses are taken to be dissipative in nature and due attention is paid to ensure that positive plastic work is done. It is shown that the mathematical structure of the elasto-plastic strain-gradient theory has similarities to conventional rigid-plasticity theory. Uniqueness and extremum principles are constructed for the solution of boundary value problems.  相似文献   

17.
A phenomenological, flow theory version of gradient plasticity for isotropic and anisotropic solids is constructed along the lines of Gudmundson [Gudmundson, P., 2004. A unified treatment of strain-gradient plasticity. J. Mech. Phys. Solids 52, 1379-1406]. Both energetic and dissipative stresses are considered in order to develop a kinematic hardening theory, which in the absence of gradient terms reduces to conventional J2 flow theory with kinematic hardening. The dissipative stress measures, work-conjugate to plastic strain and its gradient, satisfy a yield condition with associated plastic flow. The theory includes interfacial terms: elastic energy is stored and plastic work is dissipated at internal interfaces, and a yield surface is postulated for the work-conjugate stress quantities at the interface. Uniqueness and extremum principles are constructed for the solution of boundary value problems, for both the rate-dependent and the rate-independent cases. In the absence of strain gradient and interface effects, the minimum principles reduce to the classical extremum principles for a kinematically hardening elasto-plastic solid. A rigid-hardening version of the theory is also stated and the resulting theory gives rise to an extension to the classical limit load theorems. This has particular appeal as previous trial fields for limit load analysis can be used to generate immediately size-dependent bounds on limit loads.  相似文献   

18.
There exist two frameworks of strain gradient plasticity theories to model size effects observed at the micron and sub-micron scales in experiments. The first framework involves the higher-order stress and therefore requires extra boundary conditions, such as the theory of mechanism-based strain gradient (MSG) plasticity [J Mech Phys Solids 47 (1999) 1239; J Mech Phys Solids 48 (2000) 99; J Mater Res 15 (2000) 1786] established from the Taylor dislocation model. The other framework does not involve the higher-order stress, and the strain gradient effect come into play via the incremental plastic moduli. A conventional theory of mechanism-based strain gradient plasticity is established in this paper. It is also based on the Taylor dislocation model, but it does not involve the higher-order stress and therefore falls into the second strain gradient plasticity framework that preserves the structure of conventional plasticity theories. The plastic strain gradient appears only in the constitutive model, and the equilibrium equations and boundary conditions are the same as the conventional continuum theories. It is shown that the difference between this theory and the higher-order MSG plasticity theory based on the same dislocation model is only significant within a thin boundary layer of the solid.  相似文献   

19.
According to the classical elastic theory, there is always a discontinuity of rotation angle on the interface between different materials. This illogic result can be overcome by the strain gradient plasticity theory. In the light of this theory, there is a group of boundary layer solutions near the interface, which have made important adjustment of the classical results. This project is supported by National Natural Science Foundation of China (19891180).  相似文献   

20.
Plastic deformation exhibits strong size dependence at the micron scale, as observed in micro-torsion, bending, and indentation experiments. Classical plasticity theories, which possess no internal material lengths, cannot explain this size dependence. Based on dislocation mechanics, strain gradient plasticity theories have been developed for micron-scale applications. These theories, however, have been limited to infinitesimal deformation, even though the micro-scale experiments involve rather large strains and rotations. In this paper, we propose a finite deformation theory of strain gradient plasticity. The kinematics relations (including strain gradients), equilibrium equations, and constitutive laws are expressed in the reference configuration. The finite deformation strain gradient theory is used to model micro-indentation with results agreeing very well with the experimental data. We show that the finite deformation effect is not very significant for modeling micro-indentation experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号