首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用密度泛函理论计算研究了在铈表面掺杂的过渡金属(TM)离子对表面晶格氧原子活化的影响.为此,测定了经TM离子修饰的CeO2最稳定(111)表面终端的结构和稳定性.除了保持八面体氧配位的锆和铂掺杂剂外, TM掺杂剂在取代表面Ce离子时更倾向于正方形平面配位.除了Pt(1.14 eV)和Zr(正方形平面配位不稳定)外,所有TM掺杂剂的表面结构从八面体到正方形平面都很容易.通常,四价TM阳离子的离子半径比Ce^4+的小得多,从而导致了显著的拉伸应变晶格,并解释了氧空位形成能量的降低.除Zr外,当产生一个氧空位时,优先形成正方形平面结构.热力学分析表明, TM掺杂CeO2表面在典型环境催化条件下存在氧缺陷.一个具有实际意义的例子是锆掺杂CeO2(111)中的晶格氧容易活化,从而有利于CO氧化.研究结果强调了晶格氧活化的本质和TM掺杂剂在TM-铈固溶催化剂中的优选位置.  相似文献   

2.
CeO_2是一类使用非常广泛的稀土氧化物催化材料,在许多重要的催化反应过程,如机动车尾气净化、水汽转换、石油裂解等,表现出很高的活性.大量研究表明,CeO_2的高活性来源于其表面晶格氧,正是由于这些晶格氧能够直接参与氧化反应,同时反应留下的氧空位又能够被气相氧分子吸附填补,因而体现出很好的储放氧催化性能.目前多数研究采用CO氧化为模型反应,研究了CeO_2常见的(111)和(110)晶面的晶格氧活性,但对于其另外一种重要低指数晶面(100)的结构和活性研究却非常有限.需要指出的是,CeO_2(100)是一种极性表面,这给该表面的模型构建和理论研究带来了困难.为了深入了解这种极性表面的结构稳定性和催化活性,本文运用在位库仑力校正的密度泛函理论(DFT+U)方法系统研究了CeO_2(100)极性面的可能结构及相关稳定性,并且深入分析了CO在该表面上的吸附和反应.本文首先利用板层模型尝试构建稳定的CeO_2(100)极性面结构,方法是在保证整个板层化学计量配比完整的前提下,在表层或体相去除氧原子,同时使得整个板层上下对称不存在极性以利于计算.通过计算发现,在CeO_2(100)表层分布氧空位的结构比体相中分布氧空位的结构要稳定,同时,氧空位的分布越接近表面,CeO_2(100)面的结构稳定性就会越高,其最稳定的结构是将表层满覆盖氧离子移除一半.对CeO_2(100)面不同结构的稳定性及相关电子结构分析表明,CeO_2(100)表层满覆盖的氧离子间存在很强的相互排斥作用,因此倾向于降低表面氧浓度来提高表面的稳定性.另外,这种相互作用会降低相邻氧离子的价态,并能引起体相铈离子在整体表面维持完整的化学计量比的情况下,仍能出现局域4?电子而被还原为三价铈.随后我们研究了CO在CeO_2(100)最稳定和次稳定表面上的氧化反应.发现CO在不同CeO_2(100)表面的氧空位处吸附较强,另外,CO在CeO_2(100)最稳定结构上可与表面晶格氧反应形成吸附的CO_2中间物种,中间物种可直接解离成气相CO_2,也可以继续与表面晶格氧反应形成碳酸盐.而在CeO_2(100)次稳定表面上,CO很难与表面晶格氧形成吸附的CO_2中间态,而直接产生气态CO_2.  相似文献   

3.
铈基催化剂因其优异的储放氧能力被广泛地应用于多种催化反应.铈基材料作为催化剂在CH_3SH(甲硫醇)分解反应中的应用也因其产物简单、易处理而受到越来越多的关注.本课题组在前期研究中发现,纳米二氧化铈在CH_3SH催化分解反应中表现出较高的催化活性,然而催化剂却在很短时间内快速失活.为进一步提高铈基氧化物的稳定性,我们通过引入稀土元素对氧化铈催化剂进行改性,结果发现其稳定性明显提高;同时催化剂稳定性与氧空位数量有关,氧空位数量越多,催化剂越稳定.然而,目前关于氧空位对催化CH_3SH分解反应的具体作用,CH_3SH在铈基材料上的失活机理以及氧物种与催化行为之间的相互关系尚不清楚.因此,有必要进一步研究氧空位对提高催化稳定性的贡献并揭示催化行为与氧物种之间的相互关系.本文通过微波辅助柠檬酸络合法制备一系列杂原子(Zr,Y)掺杂的铈基催化剂CeO_2,Ce_(1-x)Z_rxO_2,Ce_(1-x)Y_xO_2-δ(x=0.25,0.50,0.75,1.00),通过考察锆、钇杂原子价态和离子半径对CH_3SH催化分解活性和稳定性的影响来探索铈基催化剂中氧空位的作用及氧物种与催化行为之间的关系.其中,氧物种与催化行为之间的关系可包括两类:(1)表面晶格氧与催化活性之间的关系;(2)体相晶格氧迁移与催化稳定性之间的关系.催化性能和表征结果表明,铈基氧化物中表面晶格氧对CH_3SH催化转化起着至关重要的作用.Ce_(0.75)Zr_(0.25)O_2在CH_3SH的催化分解中表现出更高的催化活性,这是由于Ce_(0.75)Zr_(0.25)O_2有更多的表面晶格氧、活性氧物种及良好的氧化还原性能.Ce_(0.75)Y_(0.25)O_2-δ也表现出更好的催化稳定性,这是由于催化剂中有更多的氧空位,它们会促进体相晶格氧迁移到催化剂表面以补充表面晶格氧.此外,Ce与杂原子之间化学价差极大地影响着表面晶格氧含量以及催化剂中体相氧的迁移率,进而影响铈基催化剂的活性和稳定性.  相似文献   

4.
钾元素掺杂对铈锆固溶体中氧物种的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了一系列不同摩尔比K+掺杂的铈锆固溶体xK-Ce0.7Zr0.3O2(x=0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40),对其催化碳烟颗粒物(PM)燃烧的活性进行了评价,并采用XRD,H2-TPR,O2-TPD,XPS测试方法对催化剂样品进行了表征。结果表明:K+掺杂后均形成了具有立方面心萤石结构的K-Ce-Zr-O固溶体催化剂。K+掺杂量的改变导致铈锆固溶体产生不同程度的晶格畸变及表面活性氧的含量改变;掺杂K+有利于晶格氧的流动性和铈锆固溶体的释放氧能力的增强,促进催化活性的提高。当0.10≤x≤0.40时,催化剂具有较好的催化性能。  相似文献   

5.
以P123作为软模板剂,通过均相沉淀法制备了CeO_2掺杂的CaO基吸收剂,研究了CeO_2掺杂对CO_2捕获的影响。结果表明,CeO_2掺杂可促进表面氧物种的生成,从而促进CaO与CO_2的碳酸化反应。CaO-CeO_2的相互作用一方面促进了从Ca到表面氧物种的电子转移;另一方面,由于部分Ca离子对晶格中Ce离子的取代,晶格的电中性被打破,有利于CeO_2中晶格氧的逸出,以及氧空位和O~(2-)的生成。本实验制备的纯CaO吸收剂的碳酸化反应活化能为28.1 kJ/mol,而掺杂CeO_2后活化能显著降低,且当Ce/Ca(物质的量比)为0.25时达到最低值10.2 kJ/mol。另外,CeO_2的掺杂有利于CaO的分散,进而减缓CaO烧结。CeO_2掺杂的吸收剂在碳酸化/煅烧循环中表现出良好的CO_2捕获性能和循环稳定性。  相似文献   

6.
钇掺杂锆酸钡具有优异的化学稳定性和离子电导率,是固体氧化物燃料电池电解质最有吸引力的候选材料之一.本文采用经典分子动力学模拟方法首次研究点缺陷和线缺陷共存的锆酸钡体系,分别得到钇掺杂剂和氧空位浓度以及刃位错对体系结构和氧传输性质的影响.结果表明,钇掺杂剂浓度过高或者过低,都不利于氧传导;无论有无刃位错缺陷, 30%钇掺杂锆酸钡体系的氧离子扩散系数更高.在1073.15 K的温度下,掺杂剂浓度小于30%时,刃位错的存在会加速氧离子扩散,这一现象可以通过刃位错、氧空位以及氧离子之间的富集-慢跑传输机制来解释.因此,在固体电解质的实际应用中,锆酸钡的掺杂剂浓度不能太高,并且可以考虑制造线缺陷来提高离子电导率.  相似文献   

7.
测定了在Ce0.6Zr0.4O2,Ce0.6Zr0.35Y0.05O2,Pr0.6Zr0.4O2和Pr0.6Zr0.35Y0.05O2 (分别表示为CZ,CYZ,PZ和PYZ)样品表面上的CO氧化反应和18O-16O 同位素交换反应.结果表明: 在CZ和PZ系列固熔中掺杂Y3 离子可以改善晶格氧的迁移速度;PZ和PZY的晶格氧比CZ 和CZY 的晶格氧具有更高的氧化反应活性.其原因是将Y3 掺杂到Ce0.6Zr0.4O2 或Pr0.6Zr0.4O2晶格中,增加了样品的氧空位浓度,从而提高了晶格氧的迁移性质,而PrOx比CeO2具有更低温度的氧化还原性质,因此PZ和PZY的晶格氧比CZ 和CZY 的晶格氧具有更高的氧化反应活性.  相似文献   

8.
采用氨水共沉淀法制备了一系列铈基复合氧化物(Ce0.9M0.1O2,M=Cu、Cr、Zr、Ti、La),借助XRD、Raman、N2吸附-脱附、ESEM和H2-TPR等手段对复合氧化物的结构进行了表征,并考察了其在HCl催化氧化制Cl2过程中的性能.结果显示:Cu、Cr和Zr掺杂能显著减小复合氧化物晶粒尺寸,提高复合氧化物的比表面积和孔容,并提供更多的低温可还原氧物种.而La和Ti的掺杂可以获得较大的表面氧空位浓度以及增加高温可还原氧物种数目.复合氧化物结构和表面性质的变化显著影响了其HCl催化氧化活性,在430℃下铈基复合氧化物催化剂活性顺序为:Ce0.9Cu0.1O2Ce0.9Cr0.1O2Ce0.9Zr0.1O2Ce0.9Ti0.1O2Ce O2Ce0.9La0.1O2,低温可还原氧物种数目直接与催化剂活性有关.反应动力学测试显示催化剂低温可还原氧物种有利于HCl在催化剂表面的吸附和活化,而催化剂表面的氧空位可以促进氧分子的吸附和活化.  相似文献   

9.
测定了在Ce0.6Zr0.4O2,Ce0.6Zr0.35Y0.05O2,Pr0.6Zr0.4O2和Pr0.6Zr0.35Y0.05O2(分别表示为CZ,CYZ,PZ和PYZ)样品表面上的CO氧化反应和^18O-^16O同位素交换反应。结果表明:在CZ和PZ系列固熔中掺杂Y^3 离子可以改善晶格氧的迁移速度;PZ和PZY的晶格氧比CZ和CZY的晶格氧具有更高的氧化反应活性。其原因是将Y^3 掺杂到Ce0.6Zr0.4O2或Pr0.6Zr0.4O2晶格中,增加了样品的氧空位浓度,从而提高了晶格氧的迁移性质,而PrOx比CeO2具有更低温度的氧化还原性质,因此PZ和PZY的晶格氧比CZ和CZY的晶格氧具有更高的氧化反应活性。  相似文献   

10.
研究碳酸铈在500, 700和900℃H_2中分解形成的CeO_(2-x)氧空位特征,并对比考察了碳酸铈在700℃空气和N_2中的分解过程,结果显示:随着温度的升高,分解获得的CeO_(2-x)颗粒尺寸增加且表面有"烧结"现象出现;另外在H_2中制备的CeO_(2-x)氧空位浓度随着温度的增加而增加,相同分解温度下, H_2中分解获得的CeO_(2-x)的氧空位浓度较在空气和N_2中制备的样品高。不同温度H_2条件下制备的CeO_(2-x)样品的紫外-可见光吸收光谱表明,随氧空位浓度的增加CeO_(2-x)的响应光谱发生红移。  相似文献   

11.
采用微波辅助柠檬酸络合法制备一系列不同铈锆比的铈锆固溶体,考察不同含量锆的掺杂对制备固溶体结构特性以及催化分解甲硫醇性能的影响。通过XRD,BET,Raman,XPS,H_2-TPR,CH_3SH-TPD等手段对其结构物化性能进行表征。表征结果显示:该制备方法成功合成铈锆固溶体且均保留立方萤石结构;锆的引入会导致合成固溶体的晶粒变小、晶格收缩,且晶格参数a随着锆引入量的增加而降低;同时,锆的添加仅仅导致物种缺陷的形成而不会产生更多的氧空位。此外,不同铈锆比固溶体催化分解甲硫醇活性实验结果表明:Ce_(0.75)Zr_(0.25)O_2氧复合物表现出最好的催化活性,之后随着锆的添加其催化性能呈现下降趋势。根据BET,XPS及H_2-TPR表征结果:在表面晶格氧相对含量相近的情况下,Ce_(0.75)Zr_(0.25)O_2因具有最大比表面积、最好的还原性能而表现出最佳的甲硫醇催化活性。最后,考察了Ce_(0.75)Zr_(0.25)O_2催化分解甲硫醇的产物分布情况,结合CH_3SH-TPD表征结果表明:铈锆固溶体催化分解甲硫醇的反应中,二甲基硫醚为中间产物且仅在低温区产生。  相似文献   

12.
在过去的25年,纳米金催化剂上CO氧化反应得到广泛研究,但始终没有一致的结论.这是因为影响纳米金催化活性的因素很多,包括金的价态、载体的性质、氧空位、金属与载体之间的相互作用等,尤其是各影响因素之间相互牵制,增加了催化反应机理的研究难度.氧化铈载体表面氧缺陷的浓度较高,有利于活性金属组分在其表面的稳定和分散,因此氧化铈纳米晶负载的Au催化剂受到广泛关注.此外,当CeO_2晶格中部分Ce被化学性质不同的其它元素取代后,可以促进CeO_2晶格氧的活化,提高氧的储放能力,从而有利于催化反应进行.因此,本文采用水热法合成了组成均匀的CeO_2,CeZrO_x和CeZrLaO_x三个载体,并通过沉淀-沉积法负载金.利用X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、高分辨透射电镜(HRTEM)、X射线吸收精细结构(XAFS)和氢气程序升温还原(H_2-TPR)等技术分析了催化剂的物相结构、表面性质、形貌以及金纳米颗粒的大小和价态等性质,并结合其在CO氧化反应中催化性能的差异,探讨影响金催化剂活性的关键因素.XRD,TEM,HRTEM和XAFS结果表明,三个载体上所得金纳米颗粒的平均尺寸都在2–4nm,且分散较好;XPS结果表明,影响催化剂活性的关键因素不是金的价态,而是载体表面的活性氧物种.从Raman结果可知,掺杂后的氧化铈载体上氧空位浓度明显增加,因而催化剂活性都有所提高.H_2-TPR进一步探讨了三个载体以及负载金后其氧化还原能力的变化,结果表明,金和载体之间的相互作用可以增强载体的氧化还原性能以及表面氧空位浓度,进一步提高了催化剂活性,而负载金催化剂氧化还原性能的变化与载体的组成密切相关.由于锆的掺杂可使金与载体之间相互作用减弱,而镧则增强了二者间相互作用,因此Au/CeZrLaO_x催化剂上锆和镧的协同掺杂作用使其表面活性氧物种浓度最高,低温时表现出最高的催化活性.  相似文献   

13.
制备方法对钯-铈锆固溶体催化剂的结构与性能的影响   总被引:4,自引:0,他引:4  
采用溶胶凝胶法制备了Pd掺杂型铈锆固溶体粉末.XRD和XPS分析结果表明,有部分Pd进入了固溶体的晶格,主要以PdO和PdO2的形态存在;900 ℃ 50 h的老化条件并没有使Pd和Ce的价态发生明显的变化;其催化性能主要取决于氧空位的数量和活性,与Pd负载型铈锆催化剂相比,表现出较好的热稳定性能.  相似文献   

14.
采用不同方法制备了铈锆复合氧化物催化剂用于催化HCl氧化反应。自发沉积策略制备的CeO_2@ZrO_2催化剂中,超细CeO_2纳米粒子均匀的镶嵌于非晶态ZrO_2中。CeO_2粒子显著的"尺寸效应"使得该催化剂具有更高的Ce~(3+)和氧空位浓度,而较高的Ce~(3+)和氧空位浓度使得催化剂具有优异的低温氧化还原性能和储释氧能力。催化性能测试表明,CeO_2@ZrO_2催化剂展现出最好的催化活性(1.90 gCl2·gcat~(-1)·h~(-1)),同时CeO_2粒子周围非晶态的ZrO_2阻碍CeO_2的高温烧结,提高了该催化剂的稳定性。  相似文献   

15.
利用扫描隧道显微镜、X射线光电子能谱和同步辐射光电子能谱研究了CeO_2(111),部分还原的CeO_(2-x)(111)(0 x 0.5)以及Ca掺杂的CeO_2模型催化剂的形貌、电子结构以及它们与CO_2分子间的相互作用。CeO_2(111)和部分还原的CeO_(2-x)(111)薄膜外延生长于Cu(111)单晶表面。不同Ca掺杂的CeO_2薄膜是通过在CeO_2(111)薄膜表面室温物理沉积金属Ca及随后真空退火到不同温度而得到的。不同的制备过程导致样品具有不同的表面组成,化学态和结构。CO_2吸附到CeO_2和部分还原的CeO_(2-x)表面后导致表面羧酸盐的形成。此外,相比于CeO_2表面,羧酸盐物种更易在部分还原的CeO_(2-x)表面生成,而且更加稳定。而在Ca掺杂的氧化铈薄膜表面,Ca~(2+)离子的存在有利于CO_2的吸附,且探测到碳酸盐物种的形成。  相似文献   

16.
CeO2是一类使用非常广泛的稀土氧化物催化材料,在许多重要的催化反应过程,如机动车尾气净化、水汽转换、石油裂解等,表现出很高的活性.大量研究表明,CeO2的高活性来源于其表面晶格氧,正是由于这些晶格氧能够直接参与氧化反应,同时反应留下的氧空位又能够被气相氧分子吸附填补,因而体现出很好的储放氧催化性能.目前多数研究采用CO氧化为模型反应,研究了CeO2常见的(111)和(110)晶面的晶格氧活性,但对于其另外一种重要低指数晶面(100)的结构和活性研究却非常有限.需要指出的是,CeO2(100)是一种极性表面,这给该表面的模型构建和理论研究带来了困难.为了深入了解这种极性表面的结构稳定性和催化活性,本文运用在位库仑力校正的密度泛函理论(DFT+U)方法系统研究了CeO2(100)极性面的可能结构及相关稳定性,并且深入分析了CO在该表面上的吸附和反应.本文首先利用板层模型尝试构建稳定的CeO2(100)极性面结构,方法是在保证整个板层化学计量配比完整的前提下,在表层或体相去除氧原子,同时使得整个板层上下对称不存在极性以利于计算.通过计算发现,在CeO2(100)表层分布氧空位的结构比体相中分布氧空位的结构要稳定,同时,氧空位的分布越接近表面,CeO2(100)面的结构稳定性就会越高,其最稳定的结构是将表层满覆盖氧离子移除一半.对CeO2(100)面不同结构的稳定性及相关电子结构分析表明,CeO2(100)表层满覆盖的氧离子间存在很强的相互排斥作用,因此倾向于降低表面氧浓度来提高表面的稳定性.另外,这种相互作用会降低相邻氧离子的价态,并能引起体相铈离子在整体表面维持完整的化学计量比的情况下,仍能出现局域4?电子而被还原为三价铈.随后我们研究了CO在CeO2(100)最稳定和次稳定表面上的氧化反应.发现CO在不同CeO2(100)表面的氧空位处吸附较强,另外,CO在CeO2(100)最稳定结构上可与表面晶格氧反应形成吸附的CO2中间物种,中间物种可直接解离成气相CO2,也可以继续与表面晶格氧反应形成碳酸盐.而在CeO2(100)次稳定表面上,CO很难与表面晶格氧形成吸附的CO2中间态,而直接产生气态CO2.  相似文献   

17.
以Ce(NO_3)_3·6H_2O为原料,水热法制备纳米CeO_2颗粒,将其在空气中高温焙烧多次获得稳定的CeO_2。以稳定的CeO_2作为研究对象,采用TG分析在不同气氛(Air/Ar)加热过程中CeO_2的失重率,并结合原位XRD研究在此过程中CeO_2的晶体结构变化。TG结果显示,在Ar气气氛加热过程中CeO_2具有较高的失重率,表明CeO_2在此过程中产生了较多的氧空位。原位XRD结果显示, CeO_2在不同气氛加热过程中一直保持良好的fcc萤石结构;且随着温度升高, CeO_2晶格发生膨胀,晶格常数增大。在Ar气气氛加热过程中CeO_2晶格常数的增长幅度略大于空气气氛中,也表明在该过程中产生了较多的氧空位,促使CeO_2晶格进一步膨胀。在加热过程中CeO_2的晶格膨胀受到温度和氧空位的同时影响,因此,使用原位技术研究CeO_2的晶体结构时,需同时考虑温度及氧空位对晶格常数的影响。  相似文献   

18.
采用一锅蒸发诱导自组装法(EISA)制备了一系列不同铈锆物质的量比的铈锆固溶体催化剂,用TGA研究了其热化学循环分解CO_2制CO的催化性能,并采用XRD、Raman光谱、H2-TPR、XPS、SEM和N_2吸附-脱附等手段对催化剂的物相结构、还原性能和表面化学性质进行了表征分析,用热重分析(TGA)研究了铈锆固溶体对热化学循环分解CO_2制CO的催化性能。结果表明,随着Ce/Zr物质的量比增加,铈锆固溶体催化剂的CO_2高温分解活性先增大后减小。Ce/Zr物质的量比为1的Ce_(0.5)Zr_(0.5)O_2催化剂由于具有较多的晶格缺陷和氧空穴,氧迁移能力强,催化活性高,而Ce/Zr物质的量比为3的Ce_(0.75)Zr_(0.25)O_2催化剂具有相对稳定的氧空穴数,循环稳定性好。循环反应后,所有的催化剂均出现了一定程度的烧结,且富锆固溶体发生了相分离,这可能会影响催化剂的性能。  相似文献   

19.
通过改变制备方法合成了不同形貌的CeO_2载体(包括球状CeO_2-S、花苞状CeO_2-F和多面体状CeO_2-P),并用氨水配位浸渍法制备了Ni/CeO_2催化剂。研究了CeO_2载体结构与Ni/CeO_2催化剂上CO甲烷化反应性能的关系。结果表明,CeO_2-S、CeO_2-F和CeO_2-P载体暴露的晶面和氧空位不同,对Ni/CeO_2催化剂催化活性影响也不相同。CeO_2-S氧空位最多,Ni/CeO_2-S在350℃下CO转化率和CH4选择性分别达到99.19%和88.88%。10 h热稳定性测试结果表明,Ni/CeO_2-S催化剂上的积炭量最少(2.5%),CH4选择性一直保持在80%左右,分别是Ni/CeO_2-F的1.3倍和Ni/CeO_2-P的17.6倍。这主要归因于CeO_2-S载体比表面积较大,主要暴露[111]晶面,且表面氧空位含量较多,使Ni/CeO_2-S催化剂的载体与活性中心的相互作用增强,从而呈现出优异的抗积炭性能。  相似文献   

20.
以NH4F为掺杂剂,采用溶胶-凝胶法制备F离子掺杂型TiO2光催化剂,对其进行XRD、XPS和PL表征,结果表明,F离子掺杂TiO2由于Ti-F配位体的形成而能抑制金红石相的生成,同时F离子掺杂能增加TiO2表面缺陷浓度并降低Ti2P键的结合能,另外,由于F离子能取代Ti-OH配位体而降低了表面羟基氧浓度.光催化研究结果表明,F离子掺杂提高了TiO2光催化活性近1.5倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号