首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of many advances in analytical and numerical modeling techniques for solving different engineering problems, an efficient solution technique for wave propagation modeling of an electromagnetic acoustic transducer (EMAT) system is still missing. Distributed point source method (DPSM) is a newly developed semi-analytical technique developed since 2000 by Placko and Kundu (2007) [12] that is very powerful and straightforward for solving various engineering problems, including acoustic and electromagnetic modeling problems. In this study DPSM has been employed to model the Lorentz type EMAT with a meander line and flat spiral type coil. The problem of wave propagation has been solved and eddy currents and Lorentz forces have been calculated. The displacement field has been obtained as well. While modeling the Lorentz force the effect of dynamic magnetic field has been considered that most current analyses ignore. Results from this analysis have been compared with the finite element method (FEM) based predictions. It should be noted that with the current state of knowledge this problem can be solved only by FEM.  相似文献   

2.
This paper presents a finite element method (FEM) using hexahedral 27-node spline acoustic elements (Spl27) with low numerical dispersion for room acoustics simulation in both the frequency and time domains, especially at higher frequencies. Dispersion error analysis in one dimension is performed to increase the accuracy of FEM using Spl27 by modifying the numerical integration points of element stiffness and mass matrices. The basic accuracy and efficiency of the FEM using the improved Spl27, which uses modified integration points, are presented through numerical experiments using benchmark problems in both the frequency and time domains, revealing that FEM using the improved Spl27 in both domains provides more accurate results than the conventional method does, and with fewer degrees of freedom. Moreover, the effectiveness of FEM using the improved Spl27 over that using hexahedral 27-node Lagrange elements is shown for time domain analysis of the sound field in a practical sized room.  相似文献   

3.
针对声学有限元分析中四节点等参单元计算精度低,对网格质量敏感的问题,将光滑有限元法引入到多流体域耦合声场的数值分析中,提出了二维多流体域耦合声场的光滑有限元解法。该方法在Helmholtz控制方程与多流体域耦合界面的声压/质点法向速度连续条件的基础上,得到二维多流体耦合声场的离散控制方程,并采用光滑有限元的分区光滑技术将声学梯度矩阵形函数导数的域内积分转换形函数的域边界积分,避免了雅克比矩阵的计算。以管道二维多流体域耦合内声场为数值分析算例,研究结果表明,与标准有限元相比,对单元尺寸较大或扭曲严重的四边形网格模型,光滑有限元的计算精度更高。因此光滑有限元能很好地应用于大尺寸单元或扭曲严重的网格模型下二维多流体域耦合声场的预测,具有良好的工程应用前景。   相似文献   

4.
5.
提出了一种新的水平变化波导中声场的耦合简正波求解方法,该方法能够处理二维点源和线源问题,提供声场的双向解。该方法利用全局矩阵(DGM)一次性求解耦合模式的系数,消除了传播矩阵递推求解中存在的误差累积问题;此外,改善了现有模型中对距离函数的归一化方法,从而避免了泄露模式指数增长导致的数值溢出问题。本文还给出了绝对软海底理想波导中耦合矩阵的闭合表达式,并分析了单个阶梯下简正波耦合现象。此外,本文还计算了理想楔形波导中的声传播问题(ASA标准问题),并与解析解及COUPLE07计算结果进行了比较,结果表明该方法是一种稳定、精确的水平变化波导中的声场计算方法。   相似文献   

6.
Bodies under impulsive motion, immersed in an infinite acoustic fluid, severely put to test any numerical method for the transient exterior acoustic problem. Such problems, in the context of the finite element method (FEM), are not well studied. FE modeling of such problems requires truncation of the infinite fluid domain at a certain distance from the structure. The volume of computation depends upon the extent of this domain as well as the mesh density. The modeling of the fluid truncation boundary is crucial to the economy and accuracy of solution and various boundary dampers have been proposed in the literature for this purpose. The second order damper leads to unsymmetric boundary matrices and this necessitates the use of an unsymmetric equation solver for large problems. The present paper demonstrates the use of FEM with zeroth, first and second order boundary dampers in conjunction with an unsymmetric, out of core, banded equation solver for impulsive motion problems of rigid bodies in an acoustic fluid. The results compare well with those obtained from analytical methods.  相似文献   

7.
梁国龙  庞福滨  张光普 《物理学报》2014,63(3):34303-034303
本文围绕粘贴黏弹性吸声材料方法对水下小平台上安装矢量传感器的指向性和测向的影响展开理论分析和实验研究.首先建立了吸声材料和平台结构组成的复合层结构的数学模型,对声波经过复合层结构的声学特性进行了分析,在此基础上利用有限元耦合边界元法对粘贴吸声材料前后的水下小平台上的矢量传感器的声学特性进行研究.通过理论计算和数值分析研究了吸声材料对矢量传感器的各通道的指向性的影响,并计算了覆盖吸声材料前后矢量传感器的测向精度.水池实验验证了分析结果的正确性.  相似文献   

8.
This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.  相似文献   

9.
一维非线性声波传播特性   总被引:3,自引:0,他引:3       下载免费PDF全文
张世功  吴先梅  张碧星  安志武 《物理学报》2016,65(10):104301-104301
针对一维非线性声波的传播问题进行了有限元仿真和实验研究. 首先推导了一维非线性声波方程的有限元形式, 含有高阶矩阵的非线性项导致声波具有波形畸变、谐波滋生、基频信号能量向高次谐波传递等非线性特性. 编制有限元程序对一维非线性声波进行了计算并对仿真得到的畸变非线性声波信号进行处理, 分析其传播性质和物理意义. 为验证有限元计算结果, 开展了水中的非线性声波传播的实验研究, 得到了不同输入信号幅度激励下和不同传播距离的畸变非线性声波信号. 然后对基波和二次谐波的传播性质进行详细讨论, 分析了二次谐波幅度与传播距离和输入信号幅度的变化关系及其意义, 拟合出二次谐波幅度随传播距离变化的方程并阐述了拟合方程的物理意义. 结果表明, 数值仿真信号及其频谱均与实验结果有较好的一致性, 证实计算方法和结果的正确性, 并提出了具有一定物理意义的二次谐波随传播距离变化的简单数学关系. 最后还对固体中的非线性声波传播性质进行了初步探讨. 本研究工作可为流体介质中的非线性声传播问题提供理论和实验依据.  相似文献   

10.
目标强度特性是海洋生物声学识别与资源量评估的重要依据,其中,基于近似几何体和声阻抗特性的理论模型法是研究海洋生物目标强度的重要手段。由于对几何形态近似处理以及数值求解方法的限制,传统理论模型对声波频率、入射方位以及目标声阻抗、形态尺寸等均有各自不同的适用范围,单一模型难以满足不同种类或同一种类但不同尺寸海洋生物的目标强度求解。本文尝试将逐渐见诸应用的有限元/边界元耦合方法用于海洋生物目标强度特性研究,分别以球形生物、纺锤形鱼类尾明角灯鱼(Ceratoscopelus warmingii)和细长形浮游动物南极大磷虾(Euphausia superba)为例进行仿真计算,并与相适应的经典理论模型进行对比分析。结果表明,对于球形生物,有限元/边界元耦合方法与解析模型的目标强度频响曲线完全吻合;对于纺锤形鱼类,有限元/边界元耦合方法可有效弥补基于模态级数解的形变圆柱体模型在中低频和两端入射时的准确性问题;对于细长形浮游动物,有限元/边界元耦合方法与畸变波玻恩近似模型高度吻合。综上,有限元/边界元耦合方法对多种海洋生物目标强度求解均具有较好的适用性,未来有待进一步结合实验测定进行验证。  相似文献   

11.
Although boundary element methods have been applied to interior problems for many years, the numerical difficulties that can occur have not been thoroughly explored. Various authors have reported low-frequency breakdowns and artificial damping due to discretization errors. In this paper, it is shown through a simple example problem that the numerical difficulties depend on the solution formulation. When the boundary conditions are imposed directly, the solution suffers from artificial damping, which may potentially lead to erroneous predictions when boundary element methods are used to evaluate the performance of damping materials. This difficulty can be alleviated by first computing an impedance or admittance matrix, and then using its reactive component to derive the solution for the acoustic field. Numerical computations are used to demonstrate that this technique eliminates artificial damping, but does not correct errors in the reactive components of the impedance or admittance matrices, which then causes nonexistence and nonuniqueness difficulties at the interior resonance frequencies for hard-wall and pressure release boundary conditions, respectively. It is shown that the admittance formulation is better suited to boundary element computations for interior problems because the resonance frequencies for pressure release boundary conditions do not begin until the smallest dimension of the boundary surface is at least one half the acoustic wavelength. Aside from producing much more accurate predictions, the admittance matrix is also much easier to interpolate at low frequencies due to the absence of interior resonances. For the example problem considered, only the formulation using the reactive component of the admittance matrix produces accurate solutions as long as the surface element discretization satisfies the standard six-element-per-wavelength rule.  相似文献   

12.
Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.  相似文献   

13.
The widely-used numerical modeling approaches such as the finite element method (FEM) and statistical energy analysis (SEA) often have limited applicability to the transmission loss prediction in mid-frequency range. In this paper, a novel hybrid edge-based smoothed FEM coupled with statistical energy analysis (ES-FE-SEA) method is proposed to further improve the accuracy of “mid-frequency” transmission loss predictions. The application of ES-FEM will “soften” the well-known ‘‘overly-stiff’’ behavior in the standard FEM solution and reduce the inherent numerical dispersion error. While the SEA approach deals with the physical uncertainty in the relatively higher frequency range. The plate of interest is appropriately described by an ES-FEM model, due to its relative robustness to perturbations. Its adjacent reverberation cavities are modeled by employing the SEA approach, because of their high model density. The coupling and interaction between SEA subsystems and the FE subsystem is governed by the “reciprocity relationship” theorem. A standard numerical example for benchmarking is examined and excellent agreement was achieved between the prediction and reference results. The proposed ES-FE-SEA is also verified by various numerical examples. The method is finally applied to the modeling a complicated engineering problem–acoustic fields on both sides of the front windshield in a passenger car.  相似文献   

14.
Integral equation methods have been widely used to solve interior eigenproblems and exterior acoustic problems (radiation and scattering). It was recently found that the real-part boundary element method (BEM) for the interior problem results in spurious eigensolutions if the singular (UT) or the hypersingular (LM) equation is used alone. The real-part BEM results in spurious solutions for interior problems in a similar way that the singular integral equation (UT method) results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz Exterior integral Equation Formulation method (CHEEF) is proposed. Based on the CHEEF method, the spurious solutions can be filtered out if additional constraints from the exterior points are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular cavities are considered. The optimum numbers and proper positions for selecting the points in the exterior domain are analytically studied. Also, numerical experiments were designed to verify the analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be rotated due to symmetry, while the nodal line of the rectangular is on a fixed position.  相似文献   

15.
In the analysis of interior acoustic problems, the time domain boundary element method (TBEM) suffers the monotonically increasing instability when using the direct Kirchhoff integral. This instability is related to the non-oscillatory static acoustic mode describing the constant spatial response in an enclosure. In this work, nonphysical natures of non-oscillatory static mode influencing the instability of TBEM calculation are investigated, and a method for stabilization is studied. In TBEM calculation, the static mode is represented by two non-oscillatory eigenmodes with different eigenvalues. The monotonically increasing instability is caused by the unstable poles of non-oscillatory eigenmodes as well as very small, very low frequency noise of an input signal. Interior problems with impedance boundary condition also exhibit the monotonically increasing instability stemming from its pseudo non-oscillatory static mode due to the lack of dissipation at very low frequencies. Calculation of transient sound fields within rigid and lined boxes provides numerical evidences. It is noted that the stabilization effort by modifying the coefficient matrix based on the spectral decomposition can be used only for correcting the unstable pole. The filtering method based on the eigen-analysis must be additionally used to avoid the remaining instability caused by very low frequency noise of input signal.  相似文献   

16.
空间声场全息重建的波叠加方法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
于飞  陈心昭  李卫兵  陈剑 《物理学报》2004,53(8):2607-2613
提出了基于波叠加法的近场声场全息技术,并将其用于任意形状物体的声辐射分析.在声辐射计算问题中,边界元法是通过离散边界面上的声学和位置变量来实现,而波叠加方法则通过叠加辐射体内部若干个简单源产生的声场来完成.因而,基于波叠加法的声全息就不存在边界面上的参数插值和奇异积分等问题,而这些问题是基于边界元法的声全息所固有的.与基于边界元法的声全息相比较,基于波叠加法的声全息在原理上更易于理解,在计算机上更容易实现.实验结果表明:该种全息技术在重建声场时,具有令人满意的重建精度. 关键词: 声全息 逆问题 波叠加方法 正则化方法  相似文献   

17.
张勇  林皋  胡志强  刘俊 《计算物理》2012,29(4):534-542
基于等几何分析方法具有自由度花费少、高精度、高阶连续性等特点,通过加权余量法对椭圆波导本征问题的亥姆霍兹方程等几何离散得出等几何分析方程.解决了传统数值方法的求解域与几何模型的非一致性问题,实现了将问题的分析计算构架于精确几何模型基础之上.分析任意截面波导的本征问题,对不同偏心率的椭圆波导以及三角形和五边形波导的截止波数的求解结果显示等几何分析方法求解波导本征问题的高效及高精度特性.与传统方法相比,此方法以较少的自由度消耗便会达到较高的求解精度,并且数值解的收敛率较快.  相似文献   

18.
This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.  相似文献   

19.
方智  季振林 《声学学报》2013,38(5):607-614
将数值模态匹配法应用于计算横截面为任意形状的直通穿孔管抗性消声器的声学特性。应用二维有限元法计算横截面的本征值和本征向量,应用模态匹配技术求解模态幅值系数,进而得到所需的声学量。对于圆形和椭圆形直通穿孔管消声器的传递损失,数值模态匹配法计算结果与三维有限元计算结果和相应的实验测量结果吻合良好,表明数值模态匹配法能够精确计算直通穿孔管消声器的声学特性。计算结果表明,穿孔管的偏移影响消声器在中高频段的消声特性,同轴结构消声器的消声性能好于非同轴结构。   相似文献   

20.
肖悦  陈剑  胡定玉  蒋丰鑫 《声学学报》2014,39(4):489-500
针对由复杂结构振动形成的封闭空间声场,提出了一种基于等效源法的面板声学贡献度分析方法。该方法首先利用基于等效源法的内部声全息技术,重构出振动结构表面的法向振速并实现对整个内部封闭声场的预测。再将振动结构的每个面板在腔体内部场点产生的声压分别用位于空腔表面附近的等效源在该点产生的辐射声压代替,将复杂的封闭非自由声场问题转化为简单的内部自由场问题,结合重建出的结构表面法向振速进而识别出封闭振动结构各面板对腔体内任意位置的声学贡献度。通过对复杂结构内声场的数值仿真和验证实验,分析了等效源的数量及与重建面距离等参数对重建精度的影响,结果表明所提方法不仅能够达到传统数值分析方法的计算精度,而且具有更简单的求解过程。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号