首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper presents a detailed Statistical Energy Analysis (SEA) and contribution analysis of the interior noise of a high-speed train through extensive simulations and measurements. The SEA model was developed based on the actual geometrical parameters of a benchmark high-speed coach. Sound transmission loss levels of the structural components of the car body, which are required in the SEA model, were tested in a dedicated acoustic laboratory following international standard ISO 140-3:1995. Modal densities of these structural components were derived from measured frequency response functions using the modal counting method. Damping loss factors were obtained using the half-power bandwidth method and the vibration attenuation method. By considering the relationship between sound radiation and power transmission, coupling loss factors between structures and cavities were estimated. Source inputs to the SEA model were derived from field experiment data. Interior noise due to those sources was predicted using the SEA model and the prediction was generally in good agreement with measurement. Contribution analysis was then performed using this validated model through parametric study, and this analysis was further examined experimentally. In conclusion, for the coach that was investigated in this paper, the key factors for interior noise are sidewall vibration, bogie area noise, and floor sound transmission loss. Based on this and other engineering considerations, an interior noise control strategy can be defined.  相似文献   

2.
挖掘机驾驶室低频结构噪声分析与优化*   总被引:1,自引:0,他引:1       下载免费PDF全文
针对某小型液压挖掘机驾驶室低频噪声过大问题,对驾驶室结构振动特性进行分析。基于有限元模型计算各工况下驾驶室噪声传递函数,运用统计学方法确定主要噪声峰值频率及相应工况;通过模态声学贡献度计算,确定危险工况下噪声贡献量较大的模态阶数,参照模态振型确定驾驶室振动变形最大的车身板件;并对该板件进行形貌优化处理,提高其一阶固有频率,进而降低驾驶室内噪声。优化结果表明,驾驶室噪声传递函数在危险频率下的峰值下降了2~4 dB。  相似文献   

3.
In this paper, Statistical Energy Analysis (SEA) is used to predict the interior noise of an acoustic cavity of elongated shape. The disadvantage of the conventional SEA method, which quantifies the response in terms of the energy averaged over each subsystem, is overcome by introducing a one-dimensional spatial decay relation, through which information about the acoustic energy variation in the elongated direction is taken into account. The modified SEA is experimentally validated using a 1:5 scaled space station prototype, having the longitudinal dimension much larger than the cross-sectional dimension. It is also compared with a model reported in the literature. It is shown that, in the region where the acoustic pressure level decays at a constant rate, the two models agree well with each other and are capable of estimating the acoustic pressure variation along the space station cabin. However, near the end walls where the decay rate of the acoustic pressure level is not constant, the proposed model provides better accuracy.  相似文献   

4.
This paper presents an active vibration control system for use with structural-acoustic coupling system using piezoelectric actuators and piezoelectric sensors. For modelling a complicated 3-D vehicle cabin model, the structural-acoustic coupling system is analyzed by combining the structural data from modal testing with the acoustic data from the finite element method. Through the structural-acoustic analysis program, the control plate and the control modes are selected, which are most effective for attenuating its noise. A robust LQG controller with two sensor signal filters is designed to remove the experimental problems such as the spillover effect due to uncontrolled modes. The robust LQG controller for the structural-acoustic coupling system can reduce the interior noise of the cavity as well as the structural vibration of the cabin.  相似文献   

5.
The radiated noise contributions of automotive body panels to the interior sound pressure levels are modeled using an approximate spectral formulation that applies the theoretical interior acoustic sensitivity terms derived from a finite element model and measured spatial-averaged structural-acoustic spectra. The finite element calculation is validated by comparison to a set of experimental acoustic transfer functions. A measurement set-up for the sound intensity and structural-acoustic response is applied to acquire the cross and auto power spectra needed to predict the relative mean-squared velocity term of each control plane near the panel surface, and to obtain the individual panel contribution function. The proposed approach also computes the noise spectra in 1/12 octave band form at selected positions in the passenger compartment, which matches well with the overall experimental results. Through an actual passenger car application, the approximate computational scheme is proven to be generally quite robust and effective for analyzing higher frequency interior noise problems.  相似文献   

6.
刘楠  金静飞 《应用声学》2018,37(3):407-412
基于线路噪声实验,系统测试分析了燃料电池有轨电车的噪声特性,研究了噪声分布以及空气传声、结构传声路径对噪声的贡献。结果表明改善车辆地板、空调、顶板和风挡的隔声性能,尤其是在500~1250 Hz的1/3倍频带范围内的隔声性能将有助于改善车辆内部声学环境。优化燃料电池系统控制,降低冷却单元转速将有助于改善车辆外部声学环境。在此基础上提出减震降噪建议措施,再次进行线路噪声实验,结果表明该措施有效。  相似文献   

7.
This paper evaluates the feasibility and effectiveness, under controlled conditions, of active structural acoustic control of a helicopter main transmission in order to attenuate the vibration of the receiving roof panel and its sound radiation into the cabin. The vibroacoustic analysis of a typical helicopter drive train is conducted to extract the dominant tones generated by the various transmission stages. A finite element model of a Bell 407 transmission and simplified roof structure is developed in order to investigate various active control arrangements using piezoceramic actuators to control wave propagation in the gearbox supporting struts or receiving panel. The principal component analysis is used to extract the most significant control paths and reduce the control effort. A multiple frequency principal component least mean square (PC-LMS) algorithm is implemented on a laboratory setup and is used to successfully reduce up to seven gearbox tones simultaneously.  相似文献   

8.
In the current paper, which deals with the noise pollution excited by distribution transformers in the living area, a comprehensive treatment scheme is put forward for the purpose of reducing the sound pressure level emitting into the environment. In accordance with the associated test standard, the sound pressure levels of distribution transformer and surrounding environment are not only tested but analyzed as well. The measurements were carried out with the frequency analysis of the 1/3 octave resolution, with the center frequencies at 125 Hz, 250 Hz, 400 Hz, and 500 Hz. As illustrated, on the basis of the measurement results, the frequency of noise at 500 Hz of distribution transformer causes the major noise pollution in the surrounding environment. This measurement result is in line with the noise frequency characteristics of distribution transformer. There are two transmission routes of noise: i) the noise excited by distribution transformer transmits by means of the wall of distribution room, and ii) part of noise spreads through the ground of distribution room. Accordingly, acoustic shield and vibration isolation device are applied for the reduction of the low frequency noise emitted through the above two paths. Aimed at applying the appropriate acoustic material and vibration mounting, the evaluation of the noise reduction and vibration absorption is carried out in accordance with the sound and vibration insulation theory. Following the noise treatment, the transformer and environment noise are measured again. The corresponding findings shed light on the fact that the sound level satisfied the requirement of limits of the ordinance. The proposed noise treatment scheme can be applied to the existing power distribution facilities for controlling the sound levels that reach a point where it is comparatively more unobjectionable.  相似文献   

9.
程科翔  马心坦 《应用声学》2020,39(5):723-729
对某拖拉机驾驶室内中频噪声进行预测,建立了拖拉机驾驶室FE-SEA(有限元统计能量分析)混合模型,通过理论计算和试验方法获取驾驶室结构内损耗因子等数据;加载振动和噪声激励后进行有限元-统计能量分析联合仿真,将仿真获取的驾驶室声压级与实测数据进行对比,分析对比表明该模型在中频段利用FE-SEA混合法分析所得结果与试验测试值拟合程度较高,分析各子系统对驾驶室声腔的能量贡献度,确定对驾驶室噪声贡献较大的子系统,针对性对驾驶室声学包进行整改,获得一定降噪效果。  相似文献   

10.
余亮亮  雷晓燕  罗锟 《应用声学》2021,40(1):163-172
为了探讨箱梁的结构噪声辐射规律,提高计算精度及效率,基于混合有限元-统计能量分析理论,建立1/10箱梁有限元-统计能量分析计算模型,并进行模态实验与声学实验验证。在此基础上进行声贡献量以及振动传递规律分析,并与相关文献进行比较。研究结果表明:混合有限元-统计能量分析模型不仅适用于箱梁结构噪声分析,而且在保证计算精度的同时提高了计算效率;在随机激励下,箱梁顶板和左右翼板的声贡献量高达87.3%,底板和腹板的声贡献量仅为13.7%;箱梁结构各子系统声贡献量规律与箱梁结构各子系统的振动大小规律保持一致。  相似文献   

11.
The FRF-based substructuring method is one of the most powerful methods in analyzing the responses of complex built-up structures with high modal density. In this paper, a general procedure for the design sensitivity analysis of a vibro-acoustic system has been presented using the FRF-based substructuring formulation. For an acoustic response function, the proposed method gives a parametric design sensitivity expression in terms of the partial derivatives of the connection element properties and the transfer functions of the substructures. The derived noise sensitivity formula is combined with a non-linear programming module to obtain the optimal design for the engine mount system of a passenger car. The objective function is defined as the area of the interior noise graph integrated over a concerned r.p.m. range. The interior noise variations with respect to the dynamic characteristics of the engine mounts and bushings have been calculated using the proposed sensitivity formulation and transferred to a non-linear optimization software. To obtain the FRFs, a finite element analysis was used for the engine mount structures and experimental techniques were used for the trimmed body including the cabin cavity. The optimization based on the sensitivity analysis gives the ideal stiffness of the engine mount and bushings. The resultant interior noise in the passenger car shows that the proposed method is efficient and accurate.  相似文献   

12.
A high rise building demands a high-speed elevator. Since a high-speed elevator has various transfer paths of noise transmitted from motor and rope to cabin interior, it is very difficult to solve the noise problem. Most research for noise reduction has been performed regarding passive noise control by using mainly absorption material and insulation material. In this study, while it is modeling as multiple-input and single-output with respect to transfer paths of high-speed elevator on conditions of stationary and driving states, the characterized frequency in the cabin is discovered through a contribution technique. It is able to replace by 1-dimensional model to control noise at a major contributed frequency. Also, a new active noise control technique has been proposed to control the cabin noise effectively at unpleasant area that is required to make quite zone for passenger. The Correlation Filtered X-LMS (Co-FXLMS) algorithm has been applied to control the dominant frequency noise that it has a high contribution. Simultaneously, this study has a proposed Moving Band Pass Filter (MBPF) to improve the performance of active noise control in the cabin which is able to apply a dynamic system with time variant states. Finally, we obtained the 8 dB noise reduction in the cabin at ear level and it has been proved that the modified active noise control using Co-FXLMS algorithm and MBPF is available to improve the performance of noise reduction.  相似文献   

13.
A modal expansion method is used to model a cylindrical enclosure excited by an external plane wave. A set of distributed vibration absorbers (DVAs) and Helmholtz resonators (HRs) are applied to the structure to control the interior acoustic levels. Using an impedance matching method, the structure, the acoustic cavity, and the noise reduction devices are fully coupled to yield an analytical formulation of the structural kinetic energy and acoustic potential energy of a treated cylindrical cavity. Lightweight DVAs and small HRs tuned to the natural frequencies of the targeted structural and acoustic modes, respectively, result in significant acoustic and structural attenuation when the devices are optimally damped. Simulations show that significant interior noise reduction can only be achieved by adding damping to both structural and acoustic modes, which are resonant in the frequency bandwidth of interest. In order to be independent of the azimuth angle of the excitation and to avoid unwanted modal interactions, the devices are distributed evenly around the cylinder in rings. This treatment can only achieve good performance if the structure and the acoustic cavity are lightly damped.  相似文献   

14.
A laboratory investigation was directed at the development of criteria for the prediction of ride quality in a noise-vibration environment. The stimuli for the study consisted of octave bands of noise centered at 500 and 2000 Hz and vertical floor vibrations composed of either 5 Hz sinusoidal vibration, or random vibrations centered at 5 Hz and with a 5 Hz bandwidth. The noise stimuli were presented at A-weighted sound pressure levels ranging from ambient to 95 dB and the vibration and acceleration levels ranging from 0.02--0.13 grms. Results indicated that the total subjective discomfort response could be divided into two subjective components. One component consisted of subjective discomfort to vibration and was found to be a linear function of vibration acceleration level. The other component consisted of discomfort due to noise which varied logarithmically with noise level (power relationship). However, the magnitude of the noise discomfort component was dependent upon the level of vibration present in the combined environment. Based on the experimental results, a model of subjective discomfort that accounted for the interdependence of noise and vibration was developed. The model was then used to develop a set of criteria (constant discomfort) curves that illustrate the basic design tradeoffs available between noise and vibration.  相似文献   

15.
A new honeycomb core design has been used to increase the stiffness of the panel and applied to improve the noise transmission loss at frequencies between 100 and 200 Hz. A model is presented to predict the transmission loss of the honeycomb panels based on the structural modal parameters. A new test specimen with fiber reinforced plastic cores and face sheets had been used to investigate the effect of stiffness and damping on noise transmission loss. The measurements of noise transmission loss have been compared with data for common structural panels. The results show that the new core fabrication techniques using moulding to improve the noise transmission are effective. In comparison to a cement panel of the same mass, the honeycomb panels have higher TL at low frequencies between 100 and 200 Hz due to higher stiffness and damping. The honeycomb panels have more significant vibration responses above 500 Hz but these are limited by damping.  相似文献   

16.
Simple modifications to a readily-available band-pass filter set produced a device with which each one-third octave band of a noise spectrum from 2 Hz to 10 kHz could be controlled.The resulting spectrum shaper was a simple and cheap tool for use in testing human reaction to a variety of noises.  相似文献   

17.
This paper describes the modal interaction between a panel and a heavy fluid cavity when the panel is excited by a broad band force in a given frequency band. The dual modal formulation (DMF) allows describing the fluid–structure coupling using the modes of each uncoupled subsystem. After having studied the convergence of the modal series on a test case, we estimate the modal energies and the total energy of each subsystem. An analysis of modal energy distribution is performed. It allows us to study the validity of SEA assumptions for this case. Added mass and added stiffness effects of the fluid are observed. These effects are related to the non-resonant acoustic modes below and above the frequency band of excitation. Moreover, the role of the spatial coupling of the resonant cavity modes with the non-resonant structure modes is also highlighted. As a result, the energy transmitted between the structure and the heavy fluid cavity generally cannot be deduced from the SEA relation established for a light fluid cavity.  相似文献   

18.
In order to theoretically predict and analyze the vibration response and acoustic radiation characteristics of a periodical orthogonally rib-stiffened plate,its vibro-acoustic equations of an underwater infinite model are established.The rib-stiffened plate is stimulated by a harmonic plane pressure.By using the Fourier transforms,Poisson's summation formula and space harmonic method,the structural vibration response and acoustic radiation pressure are expressed as functions of displacement harmonic components.Efficient semi-analytical methods are proposed in this work,and then approximate solutions for finite terms of the harmonic components are obtained by employing the truncation technique.Effects of the vibration response,rib spacing and torsional moment of the ribs on the radiation pressure are examined,and the validity of the present methods is also verified.Theoretical results show that the torsional moment of the ribs affects the modal frequencies of the stiffened plate,which should not be neglected in engineering applications with high precision requirement.With attachment of the ribs to the thin plate,its far field radiation pressure can be reduced in the low frequency range by adjusting rib spacing and cross sectional size of the ribs.  相似文献   

19.
In several automotive and aircraft applications there is a need for simple tools to assess quickly and accurately the performance of sound packages. Statistical energy analysis (SEA) and the transfer matrix method (TMM) are examples of such methods. The used methodology (for modeling sound packages) is well validated for acoustic excitations (airborne). However, a simple and reliable methodology is still lacking for mechanical excitations (structure-borne). This work concentrates on the latter. It presents and compares three different simple approaches to model the vibration and acoustic response of a mechanically excited structure with an added noise control treatment. Various examples are presented to confirm their relevance and accuracy in comparison to more exact and costly methods, such as the finite element method. In particular, it is shown that the TMM with a size correction (FTMM) is accurate enough to eliminate the classical assumption of low coupling classically assumed in SEA modeling of sound packages and/or compute efficiently the structure-borne insertion loss of sound packages used in SEA and FEM models.  相似文献   

20.
为了测量ARJ21客机的起落架噪声,在飞行现场分别采用改进的频域波束形成和解卷积算法对降落阶段的起落架噪声进行了测量。通过比较两种算法发现,解卷积算法比改进的频域波束形成算法具有更好的声源识别能力。为了提高传声器的利用率,设计了多臂螺旋阵,并且利用线性插值消除了多普勒效应。根据主起落架和前起落架的分布位置不同,将声源识别区域划分为两部分,在140—800Hz范围内对不同频段的1/3倍频程的起落架噪声进行了测量。结果发现:在250 Hz以上频段,主起落架为主要噪声源,且在中心频率500 Hz的1/3倍频程内为唯一强声源;前起落架在中心频率630 Hz的1/3倍频程内为主要噪声源。通过试验得到了主起落架和前起落架噪声在不同频段的分布特点,为起落架降噪设计提供了支持。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号