首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
本文研究了凸体p-宽度积分的问题,利用积分的方法,建立了有关凸体p-宽度积分的Brunn-Minkowski型不等式,Blaschke-Santal型不等式.作为应用,获得了Lp-投影体极,Lp-质心体极的Brunn-Minkowski型不等式.  相似文献   

2.
卢峰红  冷岗松 《应用数学》2006,19(3):632-636
根据Lutwak引进的凸体i次宽度积分的概念,本文获得了凸体i次宽度积分的Blaschke-Santal幃不等式,并把Ky Fan不等式推广到了凸体i次宽度积分.最后,本文利用其与对偶均质积分之间的关系建立了两个中心对称凸体的极的Brunn-Minkowski型不等式.  相似文献   

3.
本文运用凸几何分析理论,建立了投影体的宽度积分和仿射表面积的一些新型Brunn-Minkowski 不等式,这些结果改进了Lutwak的几个有用的定理.作为应用,进一步给出了混合投影体极的Brunn- Minkowski型不等式.  相似文献   

4.
本文运用凸几何分析理论,建立了投影体的宽度积分和仿射表面积的一些新型Brunn-Minkowski不等式,这些结果改进了Lutwak的几个有用的定理.作为应用,进一步给出了混合投影体极的BrunnMinkowski型不等式.  相似文献   

5.
Lutwak提出了凸体的Lp-曲率映象的概念,并证明了凸体与其Lp-曲率映象的体积之间的一个不等式.本文给出了Lutwak结果的一个一般形式,继而证明了凸体与其Lp-曲率映象的极的体积之间的一个不等式,并得到了凸体的Lp-投影体和Lp-曲率映象的体积之间的一个不等式.  相似文献   

6.
本文研究了关于投影不等式的Petty猜想这个凸体理论中的一个著名公开问题.利用凸体的Lp-Brunn-Minkowski-Firey理论,建立了Petty投影不等式猜想的Lp-版本的几个不同精度的不等式,推广了已有文献的结论.  相似文献   

7.
研究了n维欧氏空间中凸体K的等周亏格的下界估计,即Bonnesen型不等式.首先加强了Lutwak中得到的关于凸体K的p-平均不等式,用此得到一个用凸体K的均质积分及调和均质积分表示的等周亏格的下界估计.  相似文献   

8.
联系投影不等式Petty猜想的Lp-形式的不等式   总被引:1,自引:0,他引:1  
在凸体理论中,投影不等式的Petty猜想是一个著名的公开问题.首先通过利用Lp-混合体积和Lp-对偶混合体积的概念、Lp-投影体和几何体Γ_pK的关系、Bourgain-Milman不等式和Lp-Busemann-Petty不等式,建立了一个联系投影不等式Petty猜想的Lp-形式的不等式.继而对于每一个关于原点对称的凸体,应用Jensen不等式和几何体Γ_pK的单调性,分别给出了投影不等式Petty猜想的Lp-形式的一个逆向不等式和Lp-Petty投影不等式的一个逆向不等式.  相似文献   

9.
本文改进了凸体体积差的Minkowski不等式,获得了凸体混合体积差函数的Minkowski型不等式的加强形式,给出了凸体混合体积差函数的新的下界估计.  相似文献   

10.
Lutwak提出了凸体的Lp-曲率映象的概念,并证明了凸体与其Lp-曲率映象的体积之间的一个不等式.本文给出了Lutwak结果的一个一般形式,继而证明了凸体与其Lp-曲率映象的极的体积之间的一个不等式,并得到了凸体的Lp-投影体和Lp-曲率映象的体积之间的一个不等式.  相似文献   

11.
In this paper we prove existence and comparison results for nonlinear parabolic equations which are modeled on the problem
$\left\{{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\right.$\left\{\begin{array}{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\end{array}\right.  相似文献   

12.
Let Ω be an open, bounded domain in \mathbbRn  (n ? \mathbbN){\mathbb{R}^n\;(n \in \mathbb{N})} with smooth boundary ∂Ω. Let p, q, r, d 1, τ be positive real numbers and s be a non-negative number which satisfies 0 < \fracp-1r < \fracqs+1{0 < \frac{p-1}{r} < \frac{q}{s+1}}. We consider the shadow system of the well-known Gierer–Meinhardt system:
$ \left \{ {l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \right. $ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right.  相似文献   

13.
Let ?? be an open, bounded domain in ${\mathbb{R}^n\;(n \in \mathbb{N})}$ with smooth boundary ???. Let p, q, r, d 1, ?? be positive real numbers and s be a non-negative number which satisfies ${0 < \frac{p-1}{r} < \frac{q}{s+1}}$ . We consider the shadow system of the well-known Gierer?CMeinhardt system: $$ \left \{ \begin{array}{l@{\quad}l} \displaystyle{u_t = d_1\Delta u - u + \frac{u^p}{\xi^q}}, & \quad {\rm in}\;\Omega \times (0,T), \\ \displaystyle{\tau \xi_t = -\xi + \frac{1}{|\Omega|} \int\nolimits_\Omega\frac{u^r}{\xi^s} {\rm d}x}, & \quad {\rm in}\;(0,T), \\ \displaystyle{\frac{\partial u}{\partial \nu} =0}, & \quad {\rm on}\;\partial \Omega \times (0,T), \\ \displaystyle{\xi(0) = \xi_0 >0 , \quad u(\cdot,0) = u_0(\cdot)} \geq 0 & \quad {\rm in}\;\Omega. \end{array} \right. $$ We prove that solutions of this system exist globally in time under some conditions on the coefficients. Our results are based on a priori estimates of the solutions and improve the global existence results of Li and Ni in [4].  相似文献   

14.
本文在无边界流的光滑有界区域$\Omega\subset\mathbb{R}^n~(n>2)$上研究了具有奇异灵敏度及logistic源的抛物-椭圆趋化系统$$\left\{\begin{array}{ll}u_t=\Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+r u-\mu u^k,&x\in\Omega,\,t>0,\\ 0=\Delta v-v+u,&x\in\Omega,\,t>0\end{array}\right.$$ 其中$\chi$, $r$, $\mu>0$, $k\geq2$. 证明了若当$r$适当大, 则当$t\rightarrow\infty$时该趋化系统全局有界解呈指数收敛于$((\frac{r}{\mu})^{\frac{1}{k-1}}, (\frac{r}{\mu})^{\frac{1}{k-1}})$.  相似文献   

15.
In this paper we investigate the regularity of solutions for the following degenerate partial differential equation $$\left \{\begin{array}{ll} -\Delta_p u + u = f \qquad {\rm in} \,\Omega,\\ \frac{\partial u}{\partial \nu} = 0 \qquad \qquad \,\,\,\,\,\,\,\,\,\, {\rm on} \,\partial \Omega, \end{array}\right.$$ when ${f \in L^q(\Omega), p > 2}$ and q ≥ 2. If u is a weak solution in ${W^{1, p}(\Omega)}$ , we obtain estimates for u in the Nikolskii space ${\mathcal{N}^{1+2/r,r}(\Omega)}$ , where r = q(p ? 2) + 2, in terms of the L q norm of f. In particular, due to imbedding theorems of Nikolskii spaces into Sobolev spaces, we conclude that ${\|u\|^r_{W^{1 + 2/r - \epsilon, r}(\Omega)} \leq C(\|f\|_{L^q(\Omega)}^q + \| f\|^{r}_{L^q(\Omega)} + \|f\|^{2r/p}_{L^q(\Omega)})}$ for every ${\epsilon > 0}$ sufficiently small. Moreover, we prove that the resolvent operator is continuous and compact in ${W^{1,r}(\Omega)}$ .  相似文献   

16.
We study the following nonlinear elliptic system of Lane–Emden type $$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$ where ${\lambda \in \mathbb{R}}$ . If ${\lambda \geq 0}$ and ${\Omega}$ is an unbounded cylinder, i.e., ${\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}$ , ${N - m \geq 2, m \geq 1}$ , existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if ${\lambda \in \mathbb{R}}$ and ${\Omega}$ is a bounded domain in ${\mathbb{R}^{N}, N \geq 3}$ . In particular, a good finite dimensional decomposition of the Banach space in which we work is given.  相似文献   

17.
In this paper we deal with solutions of problems of the type $$\left\{\begin{array}{ll}-{\rm div} \Big(\frac{a(x)Du}{(1+|u|)^2} \Big)+u = \frac{b(x)|Du|^2}{(1+|u|)^3} +f \quad &{\rm in} \, \Omega,\\ u=0 &{\rm on} \partial \, \Omega, \end{array} \right.$$ where ${0 < \alpha \leq a(x) \leq \beta, |b(x)| \leq \gamma, \gamma > 0, f \in L^2 (\Omega)}$ and Ω is a bounded subset of ${\mathbb{R}^N}$ with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ${W_{0}^{1, 1}(\Omega) \cap L^{2}(\Omega)}$ if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = \frac{\alpha}{2} \int_{\Omega}\frac{|D v|^2}{(1 + |v|)^{2}} + \frac{12}{\int_{\Omega}|v|^2} - \int_{\Omega}f\,v , \quad f \in L^2(\Omega),$$ where in this case a(x) ≡ b(x) = α > 0.  相似文献   

18.
We consider the following fourth order mean field equation with Navier boundary condition $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\,\,{\rm in}\, \Omega,{\quad}u = \Delta u = 0\,\,{\rm on}\,\partial \Omega,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(*)$$ where h is a C 2,?? positive function, ?? is a bounded and smooth domain in ${\mathbb{R}^4}$ . We prove that for ${\rho \in (32m\sigma_3, 32(m + 1)\sigma_3)}$ the degree-counting formula for (*) is given by $$d(\rho)=\left\{\begin{array}{ll}\frac{1}{m!} (-\chi (\Omega) +1) \cdot\cdot \cdot (-\chi(\Omega)+m) & {\rm for}\, m >0 ,\\ 1 & {\rm for}\, m=0\end{array}\right.$$ where ??(??) is the Euler characteristic of ??. Similar result is also proved for the corresponding Dirichlet problem $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\quad{\rm in}\,\Omega, \quad u = \nabla u = 0 \quad {\rm on}\,\,\partial \Omega.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(**)$$   相似文献   

19.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

20.
Let $\Omega$ be a bounded domain in ${\bf R^n}$ with Lipschitz boundary, $\lambda >0,$ and $1\le p \le (n+2)/(n-2)$ if $n\ge 3$ and $1\le p< +\infty$ if $n=1,2$. Let $D$ be a measurable subset of $\Omega$ which belongs to the class $ {\cal C}_{\beta}=\{D\subset \Omega \quad | \quad |D|=\beta\} $ for the prescribed $\beta\in (0, |\Omega|).$ For any $D\in{\cal C}_{\beta}$, it is well known that there exists a unique global minimizer $u\in H^1_0(\Omega)$, which we denote by $u_D$, of the functional \[\quad J_{\Omega,D}(v)=\frac12\int_{\Omega}|\nabla v|^2\, dx+\frac{\lambda}{p+1}\int_{\Omega}|v|^{p+1}\, dx -\int_{\Omega}\chi_Dv\,dx \] on $H^1_0(\Omega)$. We consider the optimization problem $ E_{\beta,\Omega}=\inf_{D\in {\cal C}_{\beta}} J_D(u_D) $ and say that a subset $D^*\in {\cal C}_{\beta}$ which attains $E_{\beta,\Omega}$ is an optimal configuration to this problem. In this paper we show the existence, uniqueness and non-uniqueness, and symmetry-preserving and symmetry-breaking phenomena of the optimal configuration $D^*$ to this optimization problem in various settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号